You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgsvj0.c 46 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c__0 = 0;
  488. static real c_b27 = 1.f;
  489. /* > \brief \b CGSVJ0 pre-processor for the routine cgesvj. */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download CGSVJ0 + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgsvj0.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgsvj0.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgsvj0.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE CGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS, */
  508. /* SFMIN, TOL, NSWEEP, WORK, LWORK, INFO ) */
  509. /* INTEGER INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP */
  510. /* REAL EPS, SFMIN, TOL */
  511. /* CHARACTER*1 JOBV */
  512. /* COMPLEX A( LDA, * ), D( N ), V( LDV, * ), WORK( LWORK ) */
  513. /* REAL SVA( N ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > CGSVJ0 is called from CGESVJ as a pre-processor and that is its main */
  520. /* > purpose. It applies Jacobi rotations in the same way as CGESVJ does, but */
  521. /* > it does not check convergence (stopping criterion). Few tuning */
  522. /* > parameters (marked by [TP]) are available for the implementer. */
  523. /* > \endverbatim */
  524. /* Arguments: */
  525. /* ========== */
  526. /* > \param[in] JOBV */
  527. /* > \verbatim */
  528. /* > JOBV is CHARACTER*1 */
  529. /* > Specifies whether the output from this procedure is used */
  530. /* > to compute the matrix V: */
  531. /* > = 'V': the product of the Jacobi rotations is accumulated */
  532. /* > by postmulyiplying the N-by-N array V. */
  533. /* > (See the description of V.) */
  534. /* > = 'A': the product of the Jacobi rotations is accumulated */
  535. /* > by postmulyiplying the MV-by-N array V. */
  536. /* > (See the descriptions of MV and V.) */
  537. /* > = 'N': the Jacobi rotations are not accumulated. */
  538. /* > \endverbatim */
  539. /* > */
  540. /* > \param[in] M */
  541. /* > \verbatim */
  542. /* > M is INTEGER */
  543. /* > The number of rows of the input matrix A. M >= 0. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] N */
  547. /* > \verbatim */
  548. /* > N is INTEGER */
  549. /* > The number of columns of the input matrix A. */
  550. /* > M >= N >= 0. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in,out] A */
  554. /* > \verbatim */
  555. /* > A is COMPLEX array, dimension (LDA,N) */
  556. /* > On entry, M-by-N matrix A, such that A*diag(D) represents */
  557. /* > the input matrix. */
  558. /* > On exit, */
  559. /* > A_onexit * diag(D_onexit) represents the input matrix A*diag(D) */
  560. /* > post-multiplied by a sequence of Jacobi rotations, where the */
  561. /* > rotation threshold and the total number of sweeps are given in */
  562. /* > TOL and NSWEEP, respectively. */
  563. /* > (See the descriptions of D, TOL and NSWEEP.) */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] LDA */
  567. /* > \verbatim */
  568. /* > LDA is INTEGER */
  569. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in,out] D */
  573. /* > \verbatim */
  574. /* > D is COMPLEX array, dimension (N) */
  575. /* > The array D accumulates the scaling factors from the complex scaled */
  576. /* > Jacobi rotations. */
  577. /* > On entry, A*diag(D) represents the input matrix. */
  578. /* > On exit, A_onexit*diag(D_onexit) represents the input matrix */
  579. /* > post-multiplied by a sequence of Jacobi rotations, where the */
  580. /* > rotation threshold and the total number of sweeps are given in */
  581. /* > TOL and NSWEEP, respectively. */
  582. /* > (See the descriptions of A, TOL and NSWEEP.) */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in,out] SVA */
  586. /* > \verbatim */
  587. /* > SVA is REAL array, dimension (N) */
  588. /* > On entry, SVA contains the Euclidean norms of the columns of */
  589. /* > the matrix A*diag(D). */
  590. /* > On exit, SVA contains the Euclidean norms of the columns of */
  591. /* > the matrix A_onexit*diag(D_onexit). */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] MV */
  595. /* > \verbatim */
  596. /* > MV is INTEGER */
  597. /* > If JOBV = 'A', then MV rows of V are post-multipled by a */
  598. /* > sequence of Jacobi rotations. */
  599. /* > If JOBV = 'N', then MV is not referenced. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in,out] V */
  603. /* > \verbatim */
  604. /* > V is COMPLEX array, dimension (LDV,N) */
  605. /* > If JOBV = 'V' then N rows of V are post-multipled by a */
  606. /* > sequence of Jacobi rotations. */
  607. /* > If JOBV = 'A' then MV rows of V are post-multipled by a */
  608. /* > sequence of Jacobi rotations. */
  609. /* > If JOBV = 'N', then V is not referenced. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[in] LDV */
  613. /* > \verbatim */
  614. /* > LDV is INTEGER */
  615. /* > The leading dimension of the array V, LDV >= 1. */
  616. /* > If JOBV = 'V', LDV >= N. */
  617. /* > If JOBV = 'A', LDV >= MV. */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[in] EPS */
  621. /* > \verbatim */
  622. /* > EPS is REAL */
  623. /* > EPS = SLAMCH('Epsilon') */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[in] SFMIN */
  627. /* > \verbatim */
  628. /* > SFMIN is REAL */
  629. /* > SFMIN = SLAMCH('Safe Minimum') */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[in] TOL */
  633. /* > \verbatim */
  634. /* > TOL is REAL */
  635. /* > TOL is the threshold for Jacobi rotations. For a pair */
  636. /* > A(:,p), A(:,q) of pivot columns, the Jacobi rotation is */
  637. /* > applied only if ABS(COS(angle(A(:,p),A(:,q)))) > TOL. */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[in] NSWEEP */
  641. /* > \verbatim */
  642. /* > NSWEEP is INTEGER */
  643. /* > NSWEEP is the number of sweeps of Jacobi rotations to be */
  644. /* > performed. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[out] WORK */
  648. /* > \verbatim */
  649. /* > WORK is COMPLEX array, dimension (LWORK) */
  650. /* > \endverbatim */
  651. /* > */
  652. /* > \param[in] LWORK */
  653. /* > \verbatim */
  654. /* > LWORK is INTEGER */
  655. /* > LWORK is the dimension of WORK. LWORK >= M. */
  656. /* > \endverbatim */
  657. /* > */
  658. /* > \param[out] INFO */
  659. /* > \verbatim */
  660. /* > INFO is INTEGER */
  661. /* > = 0: successful exit. */
  662. /* > < 0: if INFO = -i, then the i-th argument had an illegal value */
  663. /* > \endverbatim */
  664. /* Authors: */
  665. /* ======== */
  666. /* > \author Univ. of Tennessee */
  667. /* > \author Univ. of California Berkeley */
  668. /* > \author Univ. of Colorado Denver */
  669. /* > \author NAG Ltd. */
  670. /* > \date June 2016 */
  671. /* > \ingroup complexOTHERcomputational */
  672. /* > \par Further Details: */
  673. /* ===================== */
  674. /* > */
  675. /* > CGSVJ0 is used just to enable CGESVJ to call a simplified version of */
  676. /* > itself to work on a submatrix of the original matrix. */
  677. /* > */
  678. /* > \par Contributor: */
  679. /* ================== */
  680. /* > */
  681. /* > Zlatko Drmac (Zagreb, Croatia) */
  682. /* > */
  683. /* > \par Bugs, Examples and Comments: */
  684. /* ================================= */
  685. /* > */
  686. /* > Please report all bugs and send interesting test examples and comments to */
  687. /* > drmac@math.hr. Thank you. */
  688. /* ===================================================================== */
  689. /* Subroutine */ void cgsvj0_(char *jobv, integer *m, integer *n, complex *a,
  690. integer *lda, complex *d__, real *sva, integer *mv, complex *v,
  691. integer *ldv, real *eps, real *sfmin, real *tol, integer *nsweep,
  692. complex *work, integer *lwork, integer *info)
  693. {
  694. /* System generated locals */
  695. integer a_dim1, a_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4, i__5,
  696. i__6, i__7;
  697. real r__1, r__2;
  698. complex q__1, q__2, q__3;
  699. /* Local variables */
  700. real aapp;
  701. complex aapq;
  702. real aaqq;
  703. integer ierr;
  704. real bigtheta;
  705. extern /* Subroutine */ void crot_(integer *, complex *, integer *,
  706. complex *, integer *, real *, complex *);
  707. complex ompq;
  708. integer pskipped;
  709. real aapp0, aapq1, temp1;
  710. integer i__, p, q;
  711. real t;
  712. extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
  713. *, complex *, integer *);
  714. real apoaq, aqoap;
  715. extern logical lsame_(char *, char *);
  716. real theta, small;
  717. extern /* Subroutine */ void ccopy_(integer *, complex *, integer *,
  718. complex *, integer *), cswap_(integer *, complex *, integer *,
  719. complex *, integer *);
  720. logical applv, rsvec;
  721. extern /* Subroutine */ void caxpy_(integer *, complex *, complex *,
  722. integer *, complex *, integer *);
  723. logical rotok;
  724. real rootsfmin;
  725. extern real scnrm2_(integer *, complex *, integer *);
  726. real cs, sn;
  727. extern /* Subroutine */ void clascl_(char *, integer *, integer *, real *,
  728. real *, integer *, integer *, complex *, integer *, integer *);
  729. extern int xerbla_(char *, integer *, ftnlen);
  730. integer ijblsk, swband;
  731. extern integer isamax_(integer *, real *, integer *);
  732. integer blskip;
  733. extern /* Subroutine */ void classq_(integer *, complex *, integer *, real
  734. *, real *);
  735. real mxaapq, thsign, mxsinj;
  736. integer ir1, emptsw, notrot, iswrot, jbc;
  737. real big;
  738. integer kbl, lkahead, igl, ibr, jgl, nbl, mvl;
  739. real rootbig, rooteps;
  740. integer rowskip;
  741. real roottol;
  742. /* -- LAPACK computational routine (version 3.8.0) -- */
  743. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  744. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  745. /* June 2016 */
  746. /* ===================================================================== */
  747. /* from BLAS */
  748. /* from LAPACK */
  749. /* Test the input parameters. */
  750. /* Parameter adjustments */
  751. --sva;
  752. --d__;
  753. a_dim1 = *lda;
  754. a_offset = 1 + a_dim1 * 1;
  755. a -= a_offset;
  756. v_dim1 = *ldv;
  757. v_offset = 1 + v_dim1 * 1;
  758. v -= v_offset;
  759. --work;
  760. /* Function Body */
  761. applv = lsame_(jobv, "A");
  762. rsvec = lsame_(jobv, "V");
  763. if (! (rsvec || applv || lsame_(jobv, "N"))) {
  764. *info = -1;
  765. } else if (*m < 0) {
  766. *info = -2;
  767. } else if (*n < 0 || *n > *m) {
  768. *info = -3;
  769. } else if (*lda < *m) {
  770. *info = -5;
  771. } else if ((rsvec || applv) && *mv < 0) {
  772. *info = -8;
  773. } else if (rsvec && *ldv < *n || applv && *ldv < *mv) {
  774. *info = -10;
  775. } else if (*tol <= *eps) {
  776. *info = -13;
  777. } else if (*nsweep < 0) {
  778. *info = -14;
  779. } else if (*lwork < *m) {
  780. *info = -16;
  781. } else {
  782. *info = 0;
  783. }
  784. /* #:( */
  785. if (*info != 0) {
  786. i__1 = -(*info);
  787. xerbla_("CGSVJ0", &i__1, (ftnlen)6);
  788. return;
  789. }
  790. if (rsvec) {
  791. mvl = *n;
  792. } else if (applv) {
  793. mvl = *mv;
  794. }
  795. rsvec = rsvec || applv;
  796. rooteps = sqrt(*eps);
  797. rootsfmin = sqrt(*sfmin);
  798. small = *sfmin / *eps;
  799. big = 1.f / *sfmin;
  800. rootbig = 1.f / rootsfmin;
  801. bigtheta = 1.f / rooteps;
  802. roottol = sqrt(*tol);
  803. emptsw = *n * (*n - 1) / 2;
  804. notrot = 0;
  805. swband = 0;
  806. /* [TP] SWBAND is a tuning parameter [TP]. It is meaningful and effective */
  807. /* if CGESVJ is used as a computational routine in the preconditioned */
  808. /* Jacobi SVD algorithm CGEJSV. For sweeps i=1:SWBAND the procedure */
  809. /* works on pivots inside a band-like region around the diagonal. */
  810. /* The boundaries are determined dynamically, based on the number of */
  811. /* pivots above a threshold. */
  812. kbl = f2cmin(8,*n);
  813. /* [TP] KBL is a tuning parameter that defines the tile size in the */
  814. /* tiling of the p-q loops of pivot pairs. In general, an optimal */
  815. /* value of KBL depends on the matrix dimensions and on the */
  816. /* parameters of the computer's memory. */
  817. nbl = *n / kbl;
  818. if (nbl * kbl != *n) {
  819. ++nbl;
  820. }
  821. /* Computing 2nd power */
  822. i__1 = kbl;
  823. blskip = i__1 * i__1;
  824. /* [TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL. */
  825. rowskip = f2cmin(5,kbl);
  826. /* [TP] ROWSKIP is a tuning parameter. */
  827. lkahead = 1;
  828. /* [TP] LKAHEAD is a tuning parameter. */
  829. /* Quasi block transformations, using the lower (upper) triangular */
  830. /* structure of the input matrix. The quasi-block-cycling usually */
  831. /* invokes cubic convergence. Big part of this cycle is done inside */
  832. /* canonical subspaces of dimensions less than M. */
  833. i__1 = *nsweep;
  834. for (i__ = 1; i__ <= i__1; ++i__) {
  835. mxaapq = 0.f;
  836. mxsinj = 0.f;
  837. iswrot = 0;
  838. notrot = 0;
  839. pskipped = 0;
  840. /* Each sweep is unrolled using KBL-by-KBL tiles over the pivot pairs */
  841. /* 1 <= p < q <= N. This is the first step toward a blocked implementation */
  842. /* of the rotations. New implementation, based on block transformations, */
  843. /* is under development. */
  844. i__2 = nbl;
  845. for (ibr = 1; ibr <= i__2; ++ibr) {
  846. igl = (ibr - 1) * kbl + 1;
  847. /* Computing MIN */
  848. i__4 = lkahead, i__5 = nbl - ibr;
  849. i__3 = f2cmin(i__4,i__5);
  850. for (ir1 = 0; ir1 <= i__3; ++ir1) {
  851. igl += ir1 * kbl;
  852. /* Computing MIN */
  853. i__5 = igl + kbl - 1, i__6 = *n - 1;
  854. i__4 = f2cmin(i__5,i__6);
  855. for (p = igl; p <= i__4; ++p) {
  856. i__5 = *n - p + 1;
  857. q = isamax_(&i__5, &sva[p], &c__1) + p - 1;
  858. if (p != q) {
  859. cswap_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 +
  860. 1], &c__1);
  861. if (rsvec) {
  862. cswap_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
  863. v_dim1 + 1], &c__1);
  864. }
  865. temp1 = sva[p];
  866. sva[p] = sva[q];
  867. sva[q] = temp1;
  868. i__5 = p;
  869. aapq.r = d__[i__5].r, aapq.i = d__[i__5].i;
  870. i__5 = p;
  871. i__6 = q;
  872. d__[i__5].r = d__[i__6].r, d__[i__5].i = d__[i__6].i;
  873. i__5 = q;
  874. d__[i__5].r = aapq.r, d__[i__5].i = aapq.i;
  875. }
  876. if (ir1 == 0) {
  877. /* Column norms are periodically updated by explicit */
  878. /* norm computation. */
  879. /* Caveat: */
  880. /* Unfortunately, some BLAS implementations compute SNCRM2(M,A(1,p),1) */
  881. /* as SQRT(S=CDOTC(M,A(1,p),1,A(1,p),1)), which may cause the result to */
  882. /* overflow for ||A(:,p)||_2 > SQRT(overflow_threshold), and to */
  883. /* underflow for ||A(:,p)||_2 < SQRT(underflow_threshold). */
  884. /* Hence, SCNRM2 cannot be trusted, not even in the case when */
  885. /* the true norm is far from the under(over)flow boundaries. */
  886. /* If properly implemented SCNRM2 is available, the IF-THEN-ELSE-END IF */
  887. /* below should be replaced with "AAPP = SCNRM2( M, A(1,p), 1 )". */
  888. if (sva[p] < rootbig && sva[p] > rootsfmin) {
  889. sva[p] = scnrm2_(m, &a[p * a_dim1 + 1], &c__1);
  890. } else {
  891. temp1 = 0.f;
  892. aapp = 1.f;
  893. classq_(m, &a[p * a_dim1 + 1], &c__1, &temp1, &
  894. aapp);
  895. sva[p] = temp1 * sqrt(aapp);
  896. }
  897. aapp = sva[p];
  898. } else {
  899. aapp = sva[p];
  900. }
  901. if (aapp > 0.f) {
  902. pskipped = 0;
  903. /* Computing MIN */
  904. i__6 = igl + kbl - 1;
  905. i__5 = f2cmin(i__6,*n);
  906. for (q = p + 1; q <= i__5; ++q) {
  907. aaqq = sva[q];
  908. if (aaqq > 0.f) {
  909. aapp0 = aapp;
  910. if (aaqq >= 1.f) {
  911. rotok = small * aapp <= aaqq;
  912. if (aapp < big / aaqq) {
  913. cdotc_(&q__3, m, &a[p * a_dim1 + 1], &
  914. c__1, &a[q * a_dim1 + 1], &
  915. c__1);
  916. q__2.r = q__3.r / aaqq, q__2.i =
  917. q__3.i / aaqq;
  918. q__1.r = q__2.r / aapp, q__1.i =
  919. q__2.i / aapp;
  920. aapq.r = q__1.r, aapq.i = q__1.i;
  921. } else {
  922. ccopy_(m, &a[p * a_dim1 + 1], &c__1, &
  923. work[1], &c__1);
  924. clascl_("G", &c__0, &c__0, &aapp, &
  925. c_b27, m, &c__1, &work[1],
  926. lda, &ierr);
  927. cdotc_(&q__2, m, &work[1], &c__1, &a[
  928. q * a_dim1 + 1], &c__1);
  929. q__1.r = q__2.r / aaqq, q__1.i =
  930. q__2.i / aaqq;
  931. aapq.r = q__1.r, aapq.i = q__1.i;
  932. }
  933. } else {
  934. rotok = aapp <= aaqq / small;
  935. if (aapp > small / aaqq) {
  936. cdotc_(&q__3, m, &a[p * a_dim1 + 1], &
  937. c__1, &a[q * a_dim1 + 1], &
  938. c__1);
  939. q__2.r = q__3.r / aapp, q__2.i =
  940. q__3.i / aapp;
  941. q__1.r = q__2.r / aaqq, q__1.i =
  942. q__2.i / aaqq;
  943. aapq.r = q__1.r, aapq.i = q__1.i;
  944. } else {
  945. ccopy_(m, &a[q * a_dim1 + 1], &c__1, &
  946. work[1], &c__1);
  947. clascl_("G", &c__0, &c__0, &aaqq, &
  948. c_b27, m, &c__1, &work[1],
  949. lda, &ierr);
  950. cdotc_(&q__2, m, &a[p * a_dim1 + 1], &
  951. c__1, &work[1], &c__1);
  952. q__1.r = q__2.r / aapp, q__1.i =
  953. q__2.i / aapp;
  954. aapq.r = q__1.r, aapq.i = q__1.i;
  955. }
  956. }
  957. /* AAPQ = AAPQ * CONJG( CWORK(p) ) * CWORK(q) */
  958. aapq1 = -c_abs(&aapq);
  959. /* Computing MAX */
  960. r__1 = mxaapq, r__2 = -aapq1;
  961. mxaapq = f2cmax(r__1,r__2);
  962. /* TO rotate or NOT to rotate, THAT is the question ... */
  963. if (abs(aapq1) > *tol) {
  964. r__1 = c_abs(&aapq);
  965. q__1.r = aapq.r / r__1, q__1.i = aapq.i /
  966. r__1;
  967. ompq.r = q__1.r, ompq.i = q__1.i;
  968. /* [RTD] ROTATED = ROTATED + ONE */
  969. if (ir1 == 0) {
  970. notrot = 0;
  971. pskipped = 0;
  972. ++iswrot;
  973. }
  974. if (rotok) {
  975. aqoap = aaqq / aapp;
  976. apoaq = aapp / aaqq;
  977. theta = (r__1 = aqoap - apoaq, abs(
  978. r__1)) * -.5f / aapq1;
  979. if (abs(theta) > bigtheta) {
  980. t = .5f / theta;
  981. cs = 1.f;
  982. r_cnjg(&q__2, &ompq);
  983. q__1.r = t * q__2.r, q__1.i = t *
  984. q__2.i;
  985. crot_(m, &a[p * a_dim1 + 1], &
  986. c__1, &a[q * a_dim1 + 1],
  987. &c__1, &cs, &q__1);
  988. if (rsvec) {
  989. r_cnjg(&q__2, &ompq);
  990. q__1.r = t * q__2.r, q__1.i = t * q__2.i;
  991. crot_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
  992. v_dim1 + 1], &c__1, &cs, &q__1);
  993. }
  994. /* Computing MAX */
  995. r__1 = 0.f, r__2 = t * apoaq *
  996. aapq1 + 1.f;
  997. sva[q] = aaqq * sqrt((f2cmax(r__1,
  998. r__2)));
  999. /* Computing MAX */
  1000. r__1 = 0.f, r__2 = 1.f - t *
  1001. aqoap * aapq1;
  1002. aapp *= sqrt((f2cmax(r__1,r__2)));
  1003. /* Computing MAX */
  1004. r__1 = mxsinj, r__2 = abs(t);
  1005. mxsinj = f2cmax(r__1,r__2);
  1006. } else {
  1007. thsign = -r_sign(&c_b27, &aapq1);
  1008. t = 1.f / (theta + thsign * sqrt(
  1009. theta * theta + 1.f));
  1010. cs = sqrt(1.f / (t * t + 1.f));
  1011. sn = t * cs;
  1012. /* Computing MAX */
  1013. r__1 = mxsinj, r__2 = abs(sn);
  1014. mxsinj = f2cmax(r__1,r__2);
  1015. /* Computing MAX */
  1016. r__1 = 0.f, r__2 = t * apoaq *
  1017. aapq1 + 1.f;
  1018. sva[q] = aaqq * sqrt((f2cmax(r__1,
  1019. r__2)));
  1020. /* Computing MAX */
  1021. r__1 = 0.f, r__2 = 1.f - t *
  1022. aqoap * aapq1;
  1023. aapp *= sqrt((f2cmax(r__1,r__2)));
  1024. r_cnjg(&q__2, &ompq);
  1025. q__1.r = sn * q__2.r, q__1.i = sn
  1026. * q__2.i;
  1027. crot_(m, &a[p * a_dim1 + 1], &
  1028. c__1, &a[q * a_dim1 + 1],
  1029. &c__1, &cs, &q__1);
  1030. if (rsvec) {
  1031. r_cnjg(&q__2, &ompq);
  1032. q__1.r = sn * q__2.r, q__1.i = sn * q__2.i;
  1033. crot_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
  1034. v_dim1 + 1], &c__1, &cs, &q__1);
  1035. }
  1036. }
  1037. i__6 = p;
  1038. i__7 = q;
  1039. q__2.r = -d__[i__7].r, q__2.i = -d__[
  1040. i__7].i;
  1041. q__1.r = q__2.r * ompq.r - q__2.i *
  1042. ompq.i, q__1.i = q__2.r *
  1043. ompq.i + q__2.i * ompq.r;
  1044. d__[i__6].r = q__1.r, d__[i__6].i =
  1045. q__1.i;
  1046. } else {
  1047. ccopy_(m, &a[p * a_dim1 + 1], &c__1, &
  1048. work[1], &c__1);
  1049. clascl_("G", &c__0, &c__0, &aapp, &
  1050. c_b27, m, &c__1, &work[1],
  1051. lda, &ierr);
  1052. clascl_("G", &c__0, &c__0, &aaqq, &
  1053. c_b27, m, &c__1, &a[q *
  1054. a_dim1 + 1], lda, &ierr);
  1055. q__1.r = -aapq.r, q__1.i = -aapq.i;
  1056. caxpy_(m, &q__1, &work[1], &c__1, &a[
  1057. q * a_dim1 + 1], &c__1);
  1058. clascl_("G", &c__0, &c__0, &c_b27, &
  1059. aaqq, m, &c__1, &a[q * a_dim1
  1060. + 1], lda, &ierr);
  1061. /* Computing MAX */
  1062. r__1 = 0.f, r__2 = 1.f - aapq1 *
  1063. aapq1;
  1064. sva[q] = aaqq * sqrt((f2cmax(r__1,r__2)))
  1065. ;
  1066. mxsinj = f2cmax(mxsinj,*sfmin);
  1067. }
  1068. /* END IF ROTOK THEN ... ELSE */
  1069. /* In the case of cancellation in updating SVA(q), SVA(p) */
  1070. /* recompute SVA(q), SVA(p). */
  1071. /* Computing 2nd power */
  1072. r__1 = sva[q] / aaqq;
  1073. if (r__1 * r__1 <= rooteps) {
  1074. if (aaqq < rootbig && aaqq >
  1075. rootsfmin) {
  1076. sva[q] = scnrm2_(m, &a[q * a_dim1
  1077. + 1], &c__1);
  1078. } else {
  1079. t = 0.f;
  1080. aaqq = 1.f;
  1081. classq_(m, &a[q * a_dim1 + 1], &
  1082. c__1, &t, &aaqq);
  1083. sva[q] = t * sqrt(aaqq);
  1084. }
  1085. }
  1086. if (aapp / aapp0 <= rooteps) {
  1087. if (aapp < rootbig && aapp >
  1088. rootsfmin) {
  1089. aapp = scnrm2_(m, &a[p * a_dim1 +
  1090. 1], &c__1);
  1091. } else {
  1092. t = 0.f;
  1093. aapp = 1.f;
  1094. classq_(m, &a[p * a_dim1 + 1], &
  1095. c__1, &t, &aapp);
  1096. aapp = t * sqrt(aapp);
  1097. }
  1098. sva[p] = aapp;
  1099. }
  1100. } else {
  1101. /* A(:,p) and A(:,q) already numerically orthogonal */
  1102. if (ir1 == 0) {
  1103. ++notrot;
  1104. }
  1105. /* [RTD] SKIPPED = SKIPPED + 1 */
  1106. ++pskipped;
  1107. }
  1108. } else {
  1109. /* A(:,q) is zero column */
  1110. if (ir1 == 0) {
  1111. ++notrot;
  1112. }
  1113. ++pskipped;
  1114. }
  1115. if (i__ <= swband && pskipped > rowskip) {
  1116. if (ir1 == 0) {
  1117. aapp = -aapp;
  1118. }
  1119. notrot = 0;
  1120. goto L2103;
  1121. }
  1122. /* L2002: */
  1123. }
  1124. /* END q-LOOP */
  1125. L2103:
  1126. /* bailed out of q-loop */
  1127. sva[p] = aapp;
  1128. } else {
  1129. sva[p] = aapp;
  1130. if (ir1 == 0 && aapp == 0.f) {
  1131. /* Computing MIN */
  1132. i__5 = igl + kbl - 1;
  1133. notrot = notrot + f2cmin(i__5,*n) - p;
  1134. }
  1135. }
  1136. /* L2001: */
  1137. }
  1138. /* end of the p-loop */
  1139. /* end of doing the block ( ibr, ibr ) */
  1140. /* L1002: */
  1141. }
  1142. /* end of ir1-loop */
  1143. /* ... go to the off diagonal blocks */
  1144. igl = (ibr - 1) * kbl + 1;
  1145. i__3 = nbl;
  1146. for (jbc = ibr + 1; jbc <= i__3; ++jbc) {
  1147. jgl = (jbc - 1) * kbl + 1;
  1148. /* doing the block at ( ibr, jbc ) */
  1149. ijblsk = 0;
  1150. /* Computing MIN */
  1151. i__5 = igl + kbl - 1;
  1152. i__4 = f2cmin(i__5,*n);
  1153. for (p = igl; p <= i__4; ++p) {
  1154. aapp = sva[p];
  1155. if (aapp > 0.f) {
  1156. pskipped = 0;
  1157. /* Computing MIN */
  1158. i__6 = jgl + kbl - 1;
  1159. i__5 = f2cmin(i__6,*n);
  1160. for (q = jgl; q <= i__5; ++q) {
  1161. aaqq = sva[q];
  1162. if (aaqq > 0.f) {
  1163. aapp0 = aapp;
  1164. /* Safe Gram matrix computation */
  1165. if (aaqq >= 1.f) {
  1166. if (aapp >= aaqq) {
  1167. rotok = small * aapp <= aaqq;
  1168. } else {
  1169. rotok = small * aaqq <= aapp;
  1170. }
  1171. if (aapp < big / aaqq) {
  1172. cdotc_(&q__3, m, &a[p * a_dim1 + 1], &
  1173. c__1, &a[q * a_dim1 + 1], &
  1174. c__1);
  1175. q__2.r = q__3.r / aaqq, q__2.i =
  1176. q__3.i / aaqq;
  1177. q__1.r = q__2.r / aapp, q__1.i =
  1178. q__2.i / aapp;
  1179. aapq.r = q__1.r, aapq.i = q__1.i;
  1180. } else {
  1181. ccopy_(m, &a[p * a_dim1 + 1], &c__1, &
  1182. work[1], &c__1);
  1183. clascl_("G", &c__0, &c__0, &aapp, &
  1184. c_b27, m, &c__1, &work[1],
  1185. lda, &ierr);
  1186. cdotc_(&q__2, m, &work[1], &c__1, &a[
  1187. q * a_dim1 + 1], &c__1);
  1188. q__1.r = q__2.r / aaqq, q__1.i =
  1189. q__2.i / aaqq;
  1190. aapq.r = q__1.r, aapq.i = q__1.i;
  1191. }
  1192. } else {
  1193. if (aapp >= aaqq) {
  1194. rotok = aapp <= aaqq / small;
  1195. } else {
  1196. rotok = aaqq <= aapp / small;
  1197. }
  1198. if (aapp > small / aaqq) {
  1199. cdotc_(&q__3, m, &a[p * a_dim1 + 1], &
  1200. c__1, &a[q * a_dim1 + 1], &
  1201. c__1);
  1202. r__1 = f2cmax(aaqq,aapp);
  1203. q__2.r = q__3.r / r__1, q__2.i =
  1204. q__3.i / r__1;
  1205. r__2 = f2cmin(aaqq,aapp);
  1206. q__1.r = q__2.r / r__2, q__1.i =
  1207. q__2.i / r__2;
  1208. aapq.r = q__1.r, aapq.i = q__1.i;
  1209. } else {
  1210. ccopy_(m, &a[q * a_dim1 + 1], &c__1, &
  1211. work[1], &c__1);
  1212. clascl_("G", &c__0, &c__0, &aaqq, &
  1213. c_b27, m, &c__1, &work[1],
  1214. lda, &ierr);
  1215. cdotc_(&q__2, m, &a[p * a_dim1 + 1], &
  1216. c__1, &work[1], &c__1);
  1217. q__1.r = q__2.r / aapp, q__1.i =
  1218. q__2.i / aapp;
  1219. aapq.r = q__1.r, aapq.i = q__1.i;
  1220. }
  1221. }
  1222. /* AAPQ = AAPQ * CONJG(CWORK(p))*CWORK(q) */
  1223. aapq1 = -c_abs(&aapq);
  1224. /* Computing MAX */
  1225. r__1 = mxaapq, r__2 = -aapq1;
  1226. mxaapq = f2cmax(r__1,r__2);
  1227. /* TO rotate or NOT to rotate, THAT is the question ... */
  1228. if (abs(aapq1) > *tol) {
  1229. r__1 = c_abs(&aapq);
  1230. q__1.r = aapq.r / r__1, q__1.i = aapq.i /
  1231. r__1;
  1232. ompq.r = q__1.r, ompq.i = q__1.i;
  1233. notrot = 0;
  1234. /* [RTD] ROTATED = ROTATED + 1 */
  1235. pskipped = 0;
  1236. ++iswrot;
  1237. if (rotok) {
  1238. aqoap = aaqq / aapp;
  1239. apoaq = aapp / aaqq;
  1240. theta = (r__1 = aqoap - apoaq, abs(
  1241. r__1)) * -.5f / aapq1;
  1242. if (aaqq > aapp0) {
  1243. theta = -theta;
  1244. }
  1245. if (abs(theta) > bigtheta) {
  1246. t = .5f / theta;
  1247. cs = 1.f;
  1248. r_cnjg(&q__2, &ompq);
  1249. q__1.r = t * q__2.r, q__1.i = t *
  1250. q__2.i;
  1251. crot_(m, &a[p * a_dim1 + 1], &
  1252. c__1, &a[q * a_dim1 + 1],
  1253. &c__1, &cs, &q__1);
  1254. if (rsvec) {
  1255. r_cnjg(&q__2, &ompq);
  1256. q__1.r = t * q__2.r, q__1.i = t * q__2.i;
  1257. crot_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
  1258. v_dim1 + 1], &c__1, &cs, &q__1);
  1259. }
  1260. /* Computing MAX */
  1261. r__1 = 0.f, r__2 = t * apoaq *
  1262. aapq1 + 1.f;
  1263. sva[q] = aaqq * sqrt((f2cmax(r__1,
  1264. r__2)));
  1265. /* Computing MAX */
  1266. r__1 = 0.f, r__2 = 1.f - t *
  1267. aqoap * aapq1;
  1268. aapp *= sqrt((f2cmax(r__1,r__2)));
  1269. /* Computing MAX */
  1270. r__1 = mxsinj, r__2 = abs(t);
  1271. mxsinj = f2cmax(r__1,r__2);
  1272. } else {
  1273. thsign = -r_sign(&c_b27, &aapq1);
  1274. if (aaqq > aapp0) {
  1275. thsign = -thsign;
  1276. }
  1277. t = 1.f / (theta + thsign * sqrt(
  1278. theta * theta + 1.f));
  1279. cs = sqrt(1.f / (t * t + 1.f));
  1280. sn = t * cs;
  1281. /* Computing MAX */
  1282. r__1 = mxsinj, r__2 = abs(sn);
  1283. mxsinj = f2cmax(r__1,r__2);
  1284. /* Computing MAX */
  1285. r__1 = 0.f, r__2 = t * apoaq *
  1286. aapq1 + 1.f;
  1287. sva[q] = aaqq * sqrt((f2cmax(r__1,
  1288. r__2)));
  1289. /* Computing MAX */
  1290. r__1 = 0.f, r__2 = 1.f - t *
  1291. aqoap * aapq1;
  1292. aapp *= sqrt((f2cmax(r__1,r__2)));
  1293. r_cnjg(&q__2, &ompq);
  1294. q__1.r = sn * q__2.r, q__1.i = sn
  1295. * q__2.i;
  1296. crot_(m, &a[p * a_dim1 + 1], &
  1297. c__1, &a[q * a_dim1 + 1],
  1298. &c__1, &cs, &q__1);
  1299. if (rsvec) {
  1300. r_cnjg(&q__2, &ompq);
  1301. q__1.r = sn * q__2.r, q__1.i = sn * q__2.i;
  1302. crot_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
  1303. v_dim1 + 1], &c__1, &cs, &q__1);
  1304. }
  1305. }
  1306. i__6 = p;
  1307. i__7 = q;
  1308. q__2.r = -d__[i__7].r, q__2.i = -d__[
  1309. i__7].i;
  1310. q__1.r = q__2.r * ompq.r - q__2.i *
  1311. ompq.i, q__1.i = q__2.r *
  1312. ompq.i + q__2.i * ompq.r;
  1313. d__[i__6].r = q__1.r, d__[i__6].i =
  1314. q__1.i;
  1315. } else {
  1316. if (aapp > aaqq) {
  1317. ccopy_(m, &a[p * a_dim1 + 1], &
  1318. c__1, &work[1], &c__1);
  1319. clascl_("G", &c__0, &c__0, &aapp,
  1320. &c_b27, m, &c__1, &work[1]
  1321. , lda, &ierr);
  1322. clascl_("G", &c__0, &c__0, &aaqq,
  1323. &c_b27, m, &c__1, &a[q *
  1324. a_dim1 + 1], lda, &ierr);
  1325. q__1.r = -aapq.r, q__1.i =
  1326. -aapq.i;
  1327. caxpy_(m, &q__1, &work[1], &c__1,
  1328. &a[q * a_dim1 + 1], &c__1)
  1329. ;
  1330. clascl_("G", &c__0, &c__0, &c_b27,
  1331. &aaqq, m, &c__1, &a[q *
  1332. a_dim1 + 1], lda, &ierr);
  1333. /* Computing MAX */
  1334. r__1 = 0.f, r__2 = 1.f - aapq1 *
  1335. aapq1;
  1336. sva[q] = aaqq * sqrt((f2cmax(r__1,
  1337. r__2)));
  1338. mxsinj = f2cmax(mxsinj,*sfmin);
  1339. } else {
  1340. ccopy_(m, &a[q * a_dim1 + 1], &
  1341. c__1, &work[1], &c__1);
  1342. clascl_("G", &c__0, &c__0, &aaqq,
  1343. &c_b27, m, &c__1, &work[1]
  1344. , lda, &ierr);
  1345. clascl_("G", &c__0, &c__0, &aapp,
  1346. &c_b27, m, &c__1, &a[p *
  1347. a_dim1 + 1], lda, &ierr);
  1348. r_cnjg(&q__2, &aapq);
  1349. q__1.r = -q__2.r, q__1.i =
  1350. -q__2.i;
  1351. caxpy_(m, &q__1, &work[1], &c__1,
  1352. &a[p * a_dim1 + 1], &c__1)
  1353. ;
  1354. clascl_("G", &c__0, &c__0, &c_b27,
  1355. &aapp, m, &c__1, &a[p *
  1356. a_dim1 + 1], lda, &ierr);
  1357. /* Computing MAX */
  1358. r__1 = 0.f, r__2 = 1.f - aapq1 *
  1359. aapq1;
  1360. sva[p] = aapp * sqrt((f2cmax(r__1,
  1361. r__2)));
  1362. mxsinj = f2cmax(mxsinj,*sfmin);
  1363. }
  1364. }
  1365. /* END IF ROTOK THEN ... ELSE */
  1366. /* In the case of cancellation in updating SVA(q), SVA(p) */
  1367. /* Computing 2nd power */
  1368. r__1 = sva[q] / aaqq;
  1369. if (r__1 * r__1 <= rooteps) {
  1370. if (aaqq < rootbig && aaqq >
  1371. rootsfmin) {
  1372. sva[q] = scnrm2_(m, &a[q * a_dim1
  1373. + 1], &c__1);
  1374. } else {
  1375. t = 0.f;
  1376. aaqq = 1.f;
  1377. classq_(m, &a[q * a_dim1 + 1], &
  1378. c__1, &t, &aaqq);
  1379. sva[q] = t * sqrt(aaqq);
  1380. }
  1381. }
  1382. /* Computing 2nd power */
  1383. r__1 = aapp / aapp0;
  1384. if (r__1 * r__1 <= rooteps) {
  1385. if (aapp < rootbig && aapp >
  1386. rootsfmin) {
  1387. aapp = scnrm2_(m, &a[p * a_dim1 +
  1388. 1], &c__1);
  1389. } else {
  1390. t = 0.f;
  1391. aapp = 1.f;
  1392. classq_(m, &a[p * a_dim1 + 1], &
  1393. c__1, &t, &aapp);
  1394. aapp = t * sqrt(aapp);
  1395. }
  1396. sva[p] = aapp;
  1397. }
  1398. /* end of OK rotation */
  1399. } else {
  1400. ++notrot;
  1401. /* [RTD] SKIPPED = SKIPPED + 1 */
  1402. ++pskipped;
  1403. ++ijblsk;
  1404. }
  1405. } else {
  1406. ++notrot;
  1407. ++pskipped;
  1408. ++ijblsk;
  1409. }
  1410. if (i__ <= swband && ijblsk >= blskip) {
  1411. sva[p] = aapp;
  1412. notrot = 0;
  1413. goto L2011;
  1414. }
  1415. if (i__ <= swband && pskipped > rowskip) {
  1416. aapp = -aapp;
  1417. notrot = 0;
  1418. goto L2203;
  1419. }
  1420. /* L2200: */
  1421. }
  1422. /* end of the q-loop */
  1423. L2203:
  1424. sva[p] = aapp;
  1425. } else {
  1426. if (aapp == 0.f) {
  1427. /* Computing MIN */
  1428. i__5 = jgl + kbl - 1;
  1429. notrot = notrot + f2cmin(i__5,*n) - jgl + 1;
  1430. }
  1431. if (aapp < 0.f) {
  1432. notrot = 0;
  1433. }
  1434. }
  1435. /* L2100: */
  1436. }
  1437. /* end of the p-loop */
  1438. /* L2010: */
  1439. }
  1440. /* end of the jbc-loop */
  1441. L2011:
  1442. /* 2011 bailed out of the jbc-loop */
  1443. /* Computing MIN */
  1444. i__4 = igl + kbl - 1;
  1445. i__3 = f2cmin(i__4,*n);
  1446. for (p = igl; p <= i__3; ++p) {
  1447. sva[p] = (r__1 = sva[p], abs(r__1));
  1448. /* L2012: */
  1449. }
  1450. /* ** */
  1451. /* L2000: */
  1452. }
  1453. /* 2000 :: end of the ibr-loop */
  1454. if (sva[*n] < rootbig && sva[*n] > rootsfmin) {
  1455. sva[*n] = scnrm2_(m, &a[*n * a_dim1 + 1], &c__1);
  1456. } else {
  1457. t = 0.f;
  1458. aapp = 1.f;
  1459. classq_(m, &a[*n * a_dim1 + 1], &c__1, &t, &aapp);
  1460. sva[*n] = t * sqrt(aapp);
  1461. }
  1462. /* Additional steering devices */
  1463. if (i__ < swband && (mxaapq <= roottol || iswrot <= *n)) {
  1464. swband = i__;
  1465. }
  1466. if (i__ > swband + 1 && mxaapq < sqrt((real) (*n)) * *tol && (real) (*
  1467. n) * mxaapq * mxsinj < *tol) {
  1468. goto L1994;
  1469. }
  1470. if (notrot >= emptsw) {
  1471. goto L1994;
  1472. }
  1473. /* L1993: */
  1474. }
  1475. /* end i=1:NSWEEP loop */
  1476. /* #:( Reaching this point means that the procedure has not converged. */
  1477. *info = *nsweep - 1;
  1478. goto L1995;
  1479. L1994:
  1480. /* #:) Reaching this point means numerical convergence after the i-th */
  1481. /* sweep. */
  1482. *info = 0;
  1483. /* #:) INFO = 0 confirms successful iterations. */
  1484. L1995:
  1485. /* Sort the vector SVA() of column norms. */
  1486. i__1 = *n - 1;
  1487. for (p = 1; p <= i__1; ++p) {
  1488. i__2 = *n - p + 1;
  1489. q = isamax_(&i__2, &sva[p], &c__1) + p - 1;
  1490. if (p != q) {
  1491. temp1 = sva[p];
  1492. sva[p] = sva[q];
  1493. sva[q] = temp1;
  1494. i__2 = p;
  1495. aapq.r = d__[i__2].r, aapq.i = d__[i__2].i;
  1496. i__2 = p;
  1497. i__3 = q;
  1498. d__[i__2].r = d__[i__3].r, d__[i__2].i = d__[i__3].i;
  1499. i__2 = q;
  1500. d__[i__2].r = aapq.r, d__[i__2].i = aapq.i;
  1501. cswap_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 + 1], &c__1);
  1502. if (rsvec) {
  1503. cswap_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * v_dim1 + 1], &
  1504. c__1);
  1505. }
  1506. }
  1507. /* L5991: */
  1508. }
  1509. return;
  1510. } /* cgsvj0_ */