You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlatm1.c 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle_() continue;
  234. #define myceiling_(w) {ceil(w)}
  235. #define myhuge_(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #define F2C_proc_par_types 1
  240. static double dpow_ui(double x, integer n) {
  241. double pow=1.0; unsigned long int u;
  242. if(n != 0) {
  243. if(n < 0) n = -n, x = 1/x;
  244. for(u = n; ; ) {
  245. if(u & 01) pow *= x;
  246. if(u >>= 1) x *= x;
  247. else break;
  248. }
  249. }
  250. return pow;
  251. }
  252. /* Table of constant values */
  253. static integer c__3 = 3;
  254. /* > \brief \b ZLATM1 */
  255. /* =========== DOCUMENTATION =========== */
  256. /* Online html documentation available at */
  257. /* http://www.netlib.org/lapack/explore-html/ */
  258. /* Definition: */
  259. /* =========== */
  260. /* SUBROUTINE ZLATM1( MODE, COND, IRSIGN, IDIST, ISEED, D, N, INFO ) */
  261. /* INTEGER IDIST, INFO, IRSIGN, MODE, N */
  262. /* DOUBLE PRECISION COND */
  263. /* INTEGER ISEED( 4 ) */
  264. /* COMPLEX*16 D( * ) */
  265. /* > \par Purpose: */
  266. /* ============= */
  267. /* > */
  268. /* > \verbatim */
  269. /* > */
  270. /* > ZLATM1 computes the entries of D(1..N) as specified by */
  271. /* > MODE, COND and IRSIGN. IDIST and ISEED determine the generation */
  272. /* > of random numbers. ZLATM1 is called by ZLATMR to generate */
  273. /* > random test matrices for LAPACK programs. */
  274. /* > \endverbatim */
  275. /* Arguments: */
  276. /* ========== */
  277. /* > \param[in] MODE */
  278. /* > \verbatim */
  279. /* > MODE is INTEGER */
  280. /* > On entry describes how D is to be computed: */
  281. /* > MODE = 0 means do not change D. */
  282. /* > MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND */
  283. /* > MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND */
  284. /* > MODE = 3 sets D(I)=COND**(-(I-1)/(N-1)) */
  285. /* > MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND) */
  286. /* > MODE = 5 sets D to random numbers in the range */
  287. /* > ( 1/COND , 1 ) such that their logarithms */
  288. /* > are uniformly distributed. */
  289. /* > MODE = 6 set D to random numbers from same distribution */
  290. /* > as the rest of the matrix. */
  291. /* > MODE < 0 has the same meaning as ABS(MODE), except that */
  292. /* > the order of the elements of D is reversed. */
  293. /* > Thus if MODE is positive, D has entries ranging from */
  294. /* > 1 to 1/COND, if negative, from 1/COND to 1, */
  295. /* > Not modified. */
  296. /* > \endverbatim */
  297. /* > */
  298. /* > \param[in] COND */
  299. /* > \verbatim */
  300. /* > COND is DOUBLE PRECISION */
  301. /* > On entry, used as described under MODE above. */
  302. /* > If used, it must be >= 1. Not modified. */
  303. /* > \endverbatim */
  304. /* > */
  305. /* > \param[in] IRSIGN */
  306. /* > \verbatim */
  307. /* > IRSIGN is INTEGER */
  308. /* > On entry, if MODE neither -6, 0 nor 6, determines sign of */
  309. /* > entries of D */
  310. /* > 0 => leave entries of D unchanged */
  311. /* > 1 => multiply each entry of D by random complex number */
  312. /* > uniformly distributed with absolute value 1 */
  313. /* > \endverbatim */
  314. /* > */
  315. /* > \param[in] IDIST */
  316. /* > \verbatim */
  317. /* > IDIST is INTEGER */
  318. /* > On entry, IDIST specifies the type of distribution to be */
  319. /* > used to generate a random matrix . */
  320. /* > 1 => real and imaginary parts each UNIFORM( 0, 1 ) */
  321. /* > 2 => real and imaginary parts each UNIFORM( -1, 1 ) */
  322. /* > 3 => real and imaginary parts each NORMAL( 0, 1 ) */
  323. /* > 4 => complex number uniform in DISK( 0, 1 ) */
  324. /* > Not modified. */
  325. /* > \endverbatim */
  326. /* > */
  327. /* > \param[in,out] ISEED */
  328. /* > \verbatim */
  329. /* > ISEED is INTEGER array, dimension ( 4 ) */
  330. /* > On entry ISEED specifies the seed of the random number */
  331. /* > generator. The random number generator uses a */
  332. /* > linear congruential sequence limited to small */
  333. /* > integers, and so should produce machine independent */
  334. /* > random numbers. The values of ISEED are changed on */
  335. /* > exit, and can be used in the next call to ZLATM1 */
  336. /* > to continue the same random number sequence. */
  337. /* > Changed on exit. */
  338. /* > \endverbatim */
  339. /* > */
  340. /* > \param[in,out] D */
  341. /* > \verbatim */
  342. /* > D is COMPLEX*16 array, dimension ( N ) */
  343. /* > Array to be computed according to MODE, COND and IRSIGN. */
  344. /* > May be changed on exit if MODE is nonzero. */
  345. /* > \endverbatim */
  346. /* > */
  347. /* > \param[in] N */
  348. /* > \verbatim */
  349. /* > N is INTEGER */
  350. /* > Number of entries of D. Not modified. */
  351. /* > \endverbatim */
  352. /* > */
  353. /* > \param[out] INFO */
  354. /* > \verbatim */
  355. /* > INFO is INTEGER */
  356. /* > 0 => normal termination */
  357. /* > -1 => if MODE not in range -6 to 6 */
  358. /* > -2 => if MODE neither -6, 0 nor 6, and */
  359. /* > IRSIGN neither 0 nor 1 */
  360. /* > -3 => if MODE neither -6, 0 nor 6 and COND less than 1 */
  361. /* > -4 => if MODE equals 6 or -6 and IDIST not in range 1 to 4 */
  362. /* > -7 => if N negative */
  363. /* > \endverbatim */
  364. /* Authors: */
  365. /* ======== */
  366. /* > \author Univ. of Tennessee */
  367. /* > \author Univ. of California Berkeley */
  368. /* > \author Univ. of Colorado Denver */
  369. /* > \author NAG Ltd. */
  370. /* > \date December 2016 */
  371. /* > \ingroup complex16_matgen */
  372. /* ===================================================================== */
  373. /* Subroutine */ void zlatm1_(integer *mode, doublereal *cond, integer *irsign,
  374. integer *idist, integer *iseed, doublecomplex *d__, integer *n,
  375. integer *info)
  376. {
  377. /* System generated locals */
  378. integer i__1, i__2, i__3;
  379. doublereal d__1;
  380. doublecomplex z__1, z__2;
  381. /* Local variables */
  382. doublereal temp;
  383. integer i__;
  384. doublereal alpha;
  385. doublecomplex ctemp;
  386. extern doublereal dlaran_(integer *);
  387. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  388. //extern /* Double Complex */ VOID zlarnd_(doublecomplex *, integer *,
  389. extern doublecomplex zlarnd_(integer *,
  390. integer *);
  391. extern /* Subroutine */ void zlarnv_(integer *, integer *, integer *,
  392. doublecomplex *);
  393. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  394. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  395. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  396. /* December 2016 */
  397. /* ===================================================================== */
  398. /* Decode and Test the input parameters. Initialize flags & seed. */
  399. /* Parameter adjustments */
  400. --d__;
  401. --iseed;
  402. /* Function Body */
  403. *info = 0;
  404. /* Quick return if possible */
  405. if (*n == 0) {
  406. return;
  407. }
  408. /* Set INFO if an error */
  409. if (*mode < -6 || *mode > 6) {
  410. *info = -1;
  411. } else if (*mode != -6 && *mode != 0 && *mode != 6 && (*irsign != 0 && *
  412. irsign != 1)) {
  413. *info = -2;
  414. } else if (*mode != -6 && *mode != 0 && *mode != 6 && *cond < 1.) {
  415. *info = -3;
  416. } else if ((*mode == 6 || *mode == -6) && (*idist < 1 || *idist > 4)) {
  417. *info = -4;
  418. } else if (*n < 0) {
  419. *info = -7;
  420. }
  421. if (*info != 0) {
  422. i__1 = -(*info);
  423. xerbla_("ZLATM1", &i__1, 6);
  424. return;
  425. }
  426. /* Compute D according to COND and MODE */
  427. if (*mode != 0) {
  428. switch (abs(*mode)) {
  429. case 1: goto L10;
  430. case 2: goto L30;
  431. case 3: goto L50;
  432. case 4: goto L70;
  433. case 5: goto L90;
  434. case 6: goto L110;
  435. }
  436. /* One large D value: */
  437. L10:
  438. i__1 = *n;
  439. for (i__ = 1; i__ <= i__1; ++i__) {
  440. i__2 = i__;
  441. d__1 = 1. / *cond;
  442. d__[i__2].r = d__1, d__[i__2].i = 0.;
  443. /* L20: */
  444. }
  445. d__[1].r = 1., d__[1].i = 0.;
  446. goto L120;
  447. /* One small D value: */
  448. L30:
  449. i__1 = *n;
  450. for (i__ = 1; i__ <= i__1; ++i__) {
  451. i__2 = i__;
  452. d__[i__2].r = 1., d__[i__2].i = 0.;
  453. /* L40: */
  454. }
  455. i__1 = *n;
  456. d__1 = 1. / *cond;
  457. d__[i__1].r = d__1, d__[i__1].i = 0.;
  458. goto L120;
  459. /* Exponentially distributed D values: */
  460. L50:
  461. d__[1].r = 1., d__[1].i = 0.;
  462. if (*n > 1) {
  463. d__1 = -1. / (doublereal) (*n - 1);
  464. alpha = pow_dd(cond, &d__1);
  465. i__1 = *n;
  466. for (i__ = 2; i__ <= i__1; ++i__) {
  467. i__2 = i__;
  468. i__3 = i__ - 1;
  469. d__1 = pow_di(&alpha, &i__3);
  470. d__[i__2].r = d__1, d__[i__2].i = 0.;
  471. /* L60: */
  472. }
  473. }
  474. goto L120;
  475. /* Arithmetically distributed D values: */
  476. L70:
  477. d__[1].r = 1., d__[1].i = 0.;
  478. if (*n > 1) {
  479. temp = 1. / *cond;
  480. alpha = (1. - temp) / (doublereal) (*n - 1);
  481. i__1 = *n;
  482. for (i__ = 2; i__ <= i__1; ++i__) {
  483. i__2 = i__;
  484. d__1 = (doublereal) (*n - i__) * alpha + temp;
  485. d__[i__2].r = d__1, d__[i__2].i = 0.;
  486. /* L80: */
  487. }
  488. }
  489. goto L120;
  490. /* Randomly distributed D values on ( 1/COND , 1): */
  491. L90:
  492. alpha = log(1. / *cond);
  493. i__1 = *n;
  494. for (i__ = 1; i__ <= i__1; ++i__) {
  495. i__2 = i__;
  496. d__1 = exp(alpha * dlaran_(&iseed[1]));
  497. d__[i__2].r = d__1, d__[i__2].i = 0.;
  498. /* L100: */
  499. }
  500. goto L120;
  501. /* Randomly distributed D values from IDIST */
  502. L110:
  503. zlarnv_(idist, &iseed[1], n, &d__[1]);
  504. L120:
  505. /* If MODE neither -6 nor 0 nor 6, and IRSIGN = 1, assign */
  506. /* random signs to D */
  507. if (*mode != -6 && *mode != 0 && *mode != 6 && *irsign == 1) {
  508. i__1 = *n;
  509. for (i__ = 1; i__ <= i__1; ++i__) {
  510. //zlarnd_(&z__1, &c__3, &iseed[1]);
  511. z__1=zlarnd_(&c__3, &iseed[1]);
  512. ctemp.r = z__1.r, ctemp.i = z__1.i;
  513. i__2 = i__;
  514. i__3 = i__;
  515. d__1 = z_abs(&ctemp);
  516. z__2.r = ctemp.r / d__1, z__2.i = ctemp.i / d__1;
  517. z__1.r = d__[i__3].r * z__2.r - d__[i__3].i * z__2.i, z__1.i =
  518. d__[i__3].r * z__2.i + d__[i__3].i * z__2.r;
  519. d__[i__2].r = z__1.r, d__[i__2].i = z__1.i;
  520. /* L130: */
  521. }
  522. }
  523. /* Reverse if MODE < 0 */
  524. if (*mode < 0) {
  525. i__1 = *n / 2;
  526. for (i__ = 1; i__ <= i__1; ++i__) {
  527. i__2 = i__;
  528. ctemp.r = d__[i__2].r, ctemp.i = d__[i__2].i;
  529. i__2 = i__;
  530. i__3 = *n + 1 - i__;
  531. d__[i__2].r = d__[i__3].r, d__[i__2].i = d__[i__3].i;
  532. i__2 = *n + 1 - i__;
  533. d__[i__2].r = ctemp.r, d__[i__2].i = ctemp.i;
  534. /* L140: */
  535. }
  536. }
  537. }
  538. return;
  539. /* End of ZLATM1 */
  540. } /* zlatm1_ */