You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhetrd_he2hb.c 34 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {0.,0.};
  487. static doublecomplex c_b2 = {1.,0.};
  488. static integer c__4 = 4;
  489. static integer c_n1 = -1;
  490. static integer c__1 = 1;
  491. static doublereal c_b33 = 1.;
  492. /* > \brief \b ZHETRD_HE2HB */
  493. /* @precisions fortran z -> s d c */
  494. /* =========== DOCUMENTATION =========== */
  495. /* Online html documentation available at */
  496. /* http://www.netlib.org/lapack/explore-html/ */
  497. /* > \htmlonly */
  498. /* > Download ZHETRD_HE2HB + dependencies */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrd.
  500. f"> */
  501. /* > [TGZ]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrd.
  503. f"> */
  504. /* > [ZIP]</a> */
  505. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrd.
  506. f"> */
  507. /* > [TXT]</a> */
  508. /* > \endhtmlonly */
  509. /* Definition: */
  510. /* =========== */
  511. /* SUBROUTINE ZHETRD_HE2HB( UPLO, N, KD, A, LDA, AB, LDAB, TAU, */
  512. /* WORK, LWORK, INFO ) */
  513. /* IMPLICIT NONE */
  514. /* CHARACTER UPLO */
  515. /* INTEGER INFO, LDA, LDAB, LWORK, N, KD */
  516. /* COMPLEX*16 A( LDA, * ), AB( LDAB, * ), */
  517. /* TAU( * ), WORK( * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > ZHETRD_HE2HB reduces a complex Hermitian matrix A to complex Hermitian */
  524. /* > band-diagonal form AB by a unitary similarity transformation: */
  525. /* > Q**H * A * Q = AB. */
  526. /* > \endverbatim */
  527. /* Arguments: */
  528. /* ========== */
  529. /* > \param[in] UPLO */
  530. /* > \verbatim */
  531. /* > UPLO is CHARACTER*1 */
  532. /* > = 'U': Upper triangle of A is stored; */
  533. /* > = 'L': Lower triangle of A is stored. */
  534. /* > \endverbatim */
  535. /* > */
  536. /* > \param[in] N */
  537. /* > \verbatim */
  538. /* > N is INTEGER */
  539. /* > The order of the matrix A. N >= 0. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] KD */
  543. /* > \verbatim */
  544. /* > KD is INTEGER */
  545. /* > The number of superdiagonals of the reduced matrix if UPLO = 'U', */
  546. /* > or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
  547. /* > The reduced matrix is stored in the array AB. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in,out] A */
  551. /* > \verbatim */
  552. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  553. /* > On entry, the Hermitian matrix A. If UPLO = 'U', the leading */
  554. /* > N-by-N upper triangular part of A contains the upper */
  555. /* > triangular part of the matrix A, and the strictly lower */
  556. /* > triangular part of A is not referenced. If UPLO = 'L', the */
  557. /* > leading N-by-N lower triangular part of A contains the lower */
  558. /* > triangular part of the matrix A, and the strictly upper */
  559. /* > triangular part of A is not referenced. */
  560. /* > On exit, if UPLO = 'U', the diagonal and first superdiagonal */
  561. /* > of A are overwritten by the corresponding elements of the */
  562. /* > tridiagonal matrix T, and the elements above the first */
  563. /* > superdiagonal, with the array TAU, represent the unitary */
  564. /* > matrix Q as a product of elementary reflectors; if UPLO */
  565. /* > = 'L', the diagonal and first subdiagonal of A are over- */
  566. /* > written by the corresponding elements of the tridiagonal */
  567. /* > matrix T, and the elements below the first subdiagonal, with */
  568. /* > the array TAU, represent the unitary matrix Q as a product */
  569. /* > of elementary reflectors. See Further Details. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in] LDA */
  573. /* > \verbatim */
  574. /* > LDA is INTEGER */
  575. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[out] AB */
  579. /* > \verbatim */
  580. /* > AB is COMPLEX*16 array, dimension (LDAB,N) */
  581. /* > On exit, the upper or lower triangle of the Hermitian band */
  582. /* > matrix A, stored in the first KD+1 rows of the array. The */
  583. /* > j-th column of A is stored in the j-th column of the array AB */
  584. /* > as follows: */
  585. /* > if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for f2cmax(1,j-kd)<=i<=j; */
  586. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+kd). */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[in] LDAB */
  590. /* > \verbatim */
  591. /* > LDAB is INTEGER */
  592. /* > The leading dimension of the array AB. LDAB >= KD+1. */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[out] TAU */
  596. /* > \verbatim */
  597. /* > TAU is COMPLEX*16 array, dimension (N-KD) */
  598. /* > The scalar factors of the elementary reflectors (see Further */
  599. /* > Details). */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[out] WORK */
  603. /* > \verbatim */
  604. /* > WORK is COMPLEX*16 array, dimension (LWORK) */
  605. /* > On exit, if INFO = 0, or if LWORK=-1, */
  606. /* > WORK(1) returns the size of LWORK. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in] LWORK */
  610. /* > \verbatim */
  611. /* > LWORK is INTEGER */
  612. /* > The dimension of the array WORK which should be calculated */
  613. /* > by a workspace query. LWORK = MAX(1, LWORK_QUERY) */
  614. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  615. /* > only calculates the optimal size of the WORK array, returns */
  616. /* > this value as the first entry of the WORK array, and no error */
  617. /* > message related to LWORK is issued by XERBLA. */
  618. /* > LWORK_QUERY = N*KD + N*f2cmax(KD,FACTOPTNB) + 2*KD*KD */
  619. /* > where FACTOPTNB is the blocking used by the QR or LQ */
  620. /* > algorithm, usually FACTOPTNB=128 is a good choice otherwise */
  621. /* > putting LWORK=-1 will provide the size of WORK. */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[out] INFO */
  625. /* > \verbatim */
  626. /* > INFO is INTEGER */
  627. /* > = 0: successful exit */
  628. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  629. /* > \endverbatim */
  630. /* Authors: */
  631. /* ======== */
  632. /* > \author Univ. of Tennessee */
  633. /* > \author Univ. of California Berkeley */
  634. /* > \author Univ. of Colorado Denver */
  635. /* > \author NAG Ltd. */
  636. /* > \date November 2017 */
  637. /* > \ingroup complex16HEcomputational */
  638. /* > \par Further Details: */
  639. /* ===================== */
  640. /* > */
  641. /* > \verbatim */
  642. /* > */
  643. /* > Implemented by Azzam Haidar. */
  644. /* > */
  645. /* > All details are available on technical report, SC11, SC13 papers. */
  646. /* > */
  647. /* > Azzam Haidar, Hatem Ltaief, and Jack Dongarra. */
  648. /* > Parallel reduction to condensed forms for symmetric eigenvalue problems */
  649. /* > using aggregated fine-grained and memory-aware kernels. In Proceedings */
  650. /* > of 2011 International Conference for High Performance Computing, */
  651. /* > Networking, Storage and Analysis (SC '11), New York, NY, USA, */
  652. /* > Article 8 , 11 pages. */
  653. /* > http://doi.acm.org/10.1145/2063384.2063394 */
  654. /* > */
  655. /* > A. Haidar, J. Kurzak, P. Luszczek, 2013. */
  656. /* > An improved parallel singular value algorithm and its implementation */
  657. /* > for multicore hardware, In Proceedings of 2013 International Conference */
  658. /* > for High Performance Computing, Networking, Storage and Analysis (SC '13). */
  659. /* > Denver, Colorado, USA, 2013. */
  660. /* > Article 90, 12 pages. */
  661. /* > http://doi.acm.org/10.1145/2503210.2503292 */
  662. /* > */
  663. /* > A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. */
  664. /* > A novel hybrid CPU-GPU generalized eigensolver for electronic structure */
  665. /* > calculations based on fine-grained memory aware tasks. */
  666. /* > International Journal of High Performance Computing Applications. */
  667. /* > Volume 28 Issue 2, Pages 196-209, May 2014. */
  668. /* > http://hpc.sagepub.com/content/28/2/196 */
  669. /* > */
  670. /* > \endverbatim */
  671. /* > */
  672. /* > \verbatim */
  673. /* > */
  674. /* > If UPLO = 'U', the matrix Q is represented as a product of elementary */
  675. /* > reflectors */
  676. /* > */
  677. /* > Q = H(k)**H . . . H(2)**H H(1)**H, where k = n-kd. */
  678. /* > */
  679. /* > Each H(i) has the form */
  680. /* > */
  681. /* > H(i) = I - tau * v * v**H */
  682. /* > */
  683. /* > where tau is a complex scalar, and v is a complex vector with */
  684. /* > v(1:i+kd-1) = 0 and v(i+kd) = 1; conjg(v(i+kd+1:n)) is stored on exit in */
  685. /* > A(i,i+kd+1:n), and tau in TAU(i). */
  686. /* > */
  687. /* > If UPLO = 'L', the matrix Q is represented as a product of elementary */
  688. /* > reflectors */
  689. /* > */
  690. /* > Q = H(1) H(2) . . . H(k), where k = n-kd. */
  691. /* > */
  692. /* > Each H(i) has the form */
  693. /* > */
  694. /* > H(i) = I - tau * v * v**H */
  695. /* > */
  696. /* > where tau is a complex scalar, and v is a complex vector with */
  697. /* > v(kd+1:i) = 0 and v(i+kd+1) = 1; v(i+kd+2:n) is stored on exit in */
  698. /* > A(i+kd+2:n,i), and tau in TAU(i). */
  699. /* > */
  700. /* > The contents of A on exit are illustrated by the following examples */
  701. /* > with n = 5: */
  702. /* > */
  703. /* > if UPLO = 'U': if UPLO = 'L': */
  704. /* > */
  705. /* > ( ab ab/v1 v1 v1 v1 ) ( ab ) */
  706. /* > ( ab ab/v2 v2 v2 ) ( ab/v1 ab ) */
  707. /* > ( ab ab/v3 v3 ) ( v1 ab/v2 ab ) */
  708. /* > ( ab ab/v4 ) ( v1 v2 ab/v3 ab ) */
  709. /* > ( ab ) ( v1 v2 v3 ab/v4 ab ) */
  710. /* > */
  711. /* > where d and e denote diagonal and off-diagonal elements of T, and vi */
  712. /* > denotes an element of the vector defining H(i). */
  713. /* > \endverbatim */
  714. /* > */
  715. /* ===================================================================== */
  716. /* Subroutine */ int zhetrd_he2hb_(char *uplo, integer *n, integer *kd,
  717. doublecomplex *a, integer *lda, doublecomplex *ab, integer *ldab,
  718. doublecomplex *tau, doublecomplex *work, integer *lwork, integer *
  719. info)
  720. {
  721. /* System generated locals */
  722. integer a_dim1, a_offset, ab_dim1, ab_offset, i__1, i__2, i__3, i__4,
  723. i__5;
  724. doublecomplex z__1;
  725. /* Local variables */
  726. extern integer ilaenv2stage_(integer *, char *, char *, integer *,
  727. integer *, integer *, integer *);
  728. integer tpos, wpos, s1pos, s2pos, i__, j;
  729. extern logical lsame_(char *, char *);
  730. integer iinfo;
  731. extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *,
  732. integer *, doublecomplex *, doublecomplex *, integer *,
  733. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  734. integer *), zhemm_(char *, char *, integer *,
  735. integer *, doublecomplex *, doublecomplex *, integer *,
  736. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  737. integer *);
  738. integer lwmin;
  739. logical upper;
  740. extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
  741. doublecomplex *, integer *), zher2k_(char *, char *, integer *,
  742. integer *, doublecomplex *, doublecomplex *, integer *,
  743. doublecomplex *, integer *, doublereal *, doublecomplex *,
  744. integer *);
  745. integer lk, pk, pn, lt, lw;
  746. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), zgelqf_(
  747. integer *, integer *, doublecomplex *, integer *, doublecomplex *,
  748. doublecomplex *, integer *, integer *), zgeqrf_(integer *,
  749. integer *, doublecomplex *, integer *, doublecomplex *,
  750. doublecomplex *, integer *, integer *), zlarft_(char *, char *,
  751. integer *, integer *, doublecomplex *, integer *, doublecomplex *,
  752. doublecomplex *, integer *), zlaset_(char *,
  753. integer *, integer *, doublecomplex *, doublecomplex *,
  754. doublecomplex *, integer *);
  755. integer ls1;
  756. logical lquery;
  757. integer ls2, ldt, ldw, lds1, lds2;
  758. /* -- LAPACK computational routine (version 3.8.0) -- */
  759. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  760. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  761. /* November 2017 */
  762. /* ===================================================================== */
  763. /* Determine the minimal workspace size required */
  764. /* and test the input parameters */
  765. /* Parameter adjustments */
  766. a_dim1 = *lda;
  767. a_offset = 1 + a_dim1 * 1;
  768. a -= a_offset;
  769. ab_dim1 = *ldab;
  770. ab_offset = 1 + ab_dim1 * 1;
  771. ab -= ab_offset;
  772. --tau;
  773. --work;
  774. /* Function Body */
  775. *info = 0;
  776. upper = lsame_(uplo, "U");
  777. lquery = *lwork == -1;
  778. lwmin = ilaenv2stage_(&c__4, "ZHETRD_HE2HB", "", n, kd, &c_n1, &c_n1);
  779. if (! upper && ! lsame_(uplo, "L")) {
  780. *info = -1;
  781. } else if (*n < 0) {
  782. *info = -2;
  783. } else if (*kd < 0) {
  784. *info = -3;
  785. } else if (*lda < f2cmax(1,*n)) {
  786. *info = -5;
  787. } else /* if(complicated condition) */ {
  788. /* Computing MAX */
  789. i__1 = 1, i__2 = *kd + 1;
  790. if (*ldab < f2cmax(i__1,i__2)) {
  791. *info = -7;
  792. } else if (*lwork < lwmin && ! lquery) {
  793. *info = -10;
  794. }
  795. }
  796. if (*info != 0) {
  797. i__1 = -(*info);
  798. xerbla_("ZHETRD_HE2HB", &i__1, (ftnlen)12);
  799. return 0;
  800. } else if (lquery) {
  801. work[1].r = (doublereal) lwmin, work[1].i = 0.;
  802. return 0;
  803. }
  804. /* Quick return if possible */
  805. /* Copy the upper/lower portion of A into AB */
  806. if (*n <= *kd + 1) {
  807. if (upper) {
  808. i__1 = *n;
  809. for (i__ = 1; i__ <= i__1; ++i__) {
  810. /* Computing MIN */
  811. i__2 = *kd + 1;
  812. lk = f2cmin(i__2,i__);
  813. zcopy_(&lk, &a[i__ - lk + 1 + i__ * a_dim1], &c__1, &ab[*kd +
  814. 1 - lk + 1 + i__ * ab_dim1], &c__1);
  815. /* L100: */
  816. }
  817. } else {
  818. i__1 = *n;
  819. for (i__ = 1; i__ <= i__1; ++i__) {
  820. /* Computing MIN */
  821. i__2 = *kd + 1, i__3 = *n - i__ + 1;
  822. lk = f2cmin(i__2,i__3);
  823. zcopy_(&lk, &a[i__ + i__ * a_dim1], &c__1, &ab[i__ * ab_dim1
  824. + 1], &c__1);
  825. /* L110: */
  826. }
  827. }
  828. work[1].r = 1., work[1].i = 0.;
  829. return 0;
  830. }
  831. /* Determine the pointer position for the workspace */
  832. ldt = *kd;
  833. lds1 = *kd;
  834. lt = ldt * *kd;
  835. lw = *n * *kd;
  836. ls1 = lds1 * *kd;
  837. ls2 = lwmin - lt - lw - ls1;
  838. /* LS2 = N*MAX(KD,FACTOPTNB) */
  839. tpos = 1;
  840. wpos = tpos + lt;
  841. s1pos = wpos + lw;
  842. s2pos = s1pos + ls1;
  843. if (upper) {
  844. ldw = *kd;
  845. lds2 = *kd;
  846. } else {
  847. ldw = *n;
  848. lds2 = *n;
  849. }
  850. /* Set the workspace of the triangular matrix T to zero once such a */
  851. /* way every time T is generated the upper/lower portion will be always zero */
  852. zlaset_("A", &ldt, kd, &c_b1, &c_b1, &work[tpos], &ldt);
  853. if (upper) {
  854. i__1 = *n - *kd;
  855. i__2 = *kd;
  856. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
  857. pn = *n - i__ - *kd + 1;
  858. /* Computing MIN */
  859. i__3 = *n - i__ - *kd + 1;
  860. pk = f2cmin(i__3,*kd);
  861. /* Compute the LQ factorization of the current block */
  862. zgelqf_(kd, &pn, &a[i__ + (i__ + *kd) * a_dim1], lda, &tau[i__], &
  863. work[s2pos], &ls2, &iinfo);
  864. /* Copy the upper portion of A into AB */
  865. i__3 = i__ + pk - 1;
  866. for (j = i__; j <= i__3; ++j) {
  867. /* Computing MIN */
  868. i__4 = *kd, i__5 = *n - j;
  869. lk = f2cmin(i__4,i__5) + 1;
  870. i__4 = *ldab - 1;
  871. zcopy_(&lk, &a[j + j * a_dim1], lda, &ab[*kd + 1 + j *
  872. ab_dim1], &i__4);
  873. /* L20: */
  874. }
  875. zlaset_("Lower", &pk, &pk, &c_b1, &c_b2, &a[i__ + (i__ + *kd) *
  876. a_dim1], lda);
  877. /* Form the matrix T */
  878. zlarft_("Forward", "Rowwise", &pn, &pk, &a[i__ + (i__ + *kd) *
  879. a_dim1], lda, &tau[i__], &work[tpos], &ldt);
  880. /* Compute W: */
  881. zgemm_("Conjugate", "No transpose", &pk, &pn, &pk, &c_b2, &work[
  882. tpos], &ldt, &a[i__ + (i__ + *kd) * a_dim1], lda, &c_b1, &
  883. work[s2pos], &lds2);
  884. zhemm_("Right", uplo, &pk, &pn, &c_b2, &a[i__ + *kd + (i__ + *kd)
  885. * a_dim1], lda, &work[s2pos], &lds2, &c_b1, &work[wpos], &
  886. ldw);
  887. zgemm_("No transpose", "Conjugate", &pk, &pk, &pn, &c_b2, &work[
  888. wpos], &ldw, &work[s2pos], &lds2, &c_b1, &work[s1pos], &
  889. lds1);
  890. z__1.r = -.5, z__1.i = 0.;
  891. zgemm_("No transpose", "No transpose", &pk, &pn, &pk, &z__1, &
  892. work[s1pos], &lds1, &a[i__ + (i__ + *kd) * a_dim1], lda, &
  893. c_b2, &work[wpos], &ldw);
  894. /* Update the unreduced submatrix A(i+kd:n,i+kd:n), using */
  895. /* an update of the form: A := A - V'*W - W'*V */
  896. z__1.r = -1., z__1.i = 0.;
  897. zher2k_(uplo, "Conjugate", &pn, &pk, &z__1, &a[i__ + (i__ + *kd) *
  898. a_dim1], lda, &work[wpos], &ldw, &c_b33, &a[i__ + *kd + (
  899. i__ + *kd) * a_dim1], lda);
  900. /* L10: */
  901. }
  902. /* Copy the upper band to AB which is the band storage matrix */
  903. i__2 = *n;
  904. for (j = *n - *kd + 1; j <= i__2; ++j) {
  905. /* Computing MIN */
  906. i__1 = *kd, i__3 = *n - j;
  907. lk = f2cmin(i__1,i__3) + 1;
  908. i__1 = *ldab - 1;
  909. zcopy_(&lk, &a[j + j * a_dim1], lda, &ab[*kd + 1 + j * ab_dim1], &
  910. i__1);
  911. /* L30: */
  912. }
  913. } else {
  914. /* Reduce the lower triangle of A to lower band matrix */
  915. i__2 = *n - *kd;
  916. i__1 = *kd;
  917. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
  918. pn = *n - i__ - *kd + 1;
  919. /* Computing MIN */
  920. i__3 = *n - i__ - *kd + 1;
  921. pk = f2cmin(i__3,*kd);
  922. /* Compute the QR factorization of the current block */
  923. zgeqrf_(&pn, kd, &a[i__ + *kd + i__ * a_dim1], lda, &tau[i__], &
  924. work[s2pos], &ls2, &iinfo);
  925. /* Copy the upper portion of A into AB */
  926. i__3 = i__ + pk - 1;
  927. for (j = i__; j <= i__3; ++j) {
  928. /* Computing MIN */
  929. i__4 = *kd, i__5 = *n - j;
  930. lk = f2cmin(i__4,i__5) + 1;
  931. zcopy_(&lk, &a[j + j * a_dim1], &c__1, &ab[j * ab_dim1 + 1], &
  932. c__1);
  933. /* L50: */
  934. }
  935. zlaset_("Upper", &pk, &pk, &c_b1, &c_b2, &a[i__ + *kd + i__ *
  936. a_dim1], lda);
  937. /* Form the matrix T */
  938. zlarft_("Forward", "Columnwise", &pn, &pk, &a[i__ + *kd + i__ *
  939. a_dim1], lda, &tau[i__], &work[tpos], &ldt);
  940. /* Compute W: */
  941. zgemm_("No transpose", "No transpose", &pn, &pk, &pk, &c_b2, &a[
  942. i__ + *kd + i__ * a_dim1], lda, &work[tpos], &ldt, &c_b1,
  943. &work[s2pos], &lds2);
  944. zhemm_("Left", uplo, &pn, &pk, &c_b2, &a[i__ + *kd + (i__ + *kd) *
  945. a_dim1], lda, &work[s2pos], &lds2, &c_b1, &work[wpos], &
  946. ldw);
  947. zgemm_("Conjugate", "No transpose", &pk, &pk, &pn, &c_b2, &work[
  948. s2pos], &lds2, &work[wpos], &ldw, &c_b1, &work[s1pos], &
  949. lds1);
  950. z__1.r = -.5, z__1.i = 0.;
  951. zgemm_("No transpose", "No transpose", &pn, &pk, &pk, &z__1, &a[
  952. i__ + *kd + i__ * a_dim1], lda, &work[s1pos], &lds1, &
  953. c_b2, &work[wpos], &ldw);
  954. /* Update the unreduced submatrix A(i+kd:n,i+kd:n), using */
  955. /* an update of the form: A := A - V*W' - W*V' */
  956. z__1.r = -1., z__1.i = 0.;
  957. zher2k_(uplo, "No transpose", &pn, &pk, &z__1, &a[i__ + *kd + i__
  958. * a_dim1], lda, &work[wpos], &ldw, &c_b33, &a[i__ + *kd +
  959. (i__ + *kd) * a_dim1], lda);
  960. /* ================================================================== */
  961. /* RESTORE A FOR COMPARISON AND CHECKING TO BE REMOVED */
  962. /* DO 45 J = I, I+PK-1 */
  963. /* LK = MIN( KD, N-J ) + 1 */
  964. /* CALL ZCOPY( LK, AB( 1, J ), 1, A( J, J ), 1 ) */
  965. /* 45 CONTINUE */
  966. /* ================================================================== */
  967. /* L40: */
  968. }
  969. /* Copy the lower band to AB which is the band storage matrix */
  970. i__1 = *n;
  971. for (j = *n - *kd + 1; j <= i__1; ++j) {
  972. /* Computing MIN */
  973. i__2 = *kd, i__3 = *n - j;
  974. lk = f2cmin(i__2,i__3) + 1;
  975. zcopy_(&lk, &a[j + j * a_dim1], &c__1, &ab[j * ab_dim1 + 1], &
  976. c__1);
  977. /* L60: */
  978. }
  979. }
  980. work[1].r = (doublereal) lwmin, work[1].i = 0.;
  981. return 0;
  982. /* End of ZHETRD_HE2HB */
  983. } /* zhetrd_he2hb__ */