|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- test pooling api
- """
- import numpy as np
-
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common.api import _executor
-
-
- class AvgNet(nn.Cell):
- def __init__(self,
- kernel_size,
- stride=None):
- super(AvgNet, self).__init__()
- self.avgpool = nn.AvgPool2d(kernel_size, stride)
-
- def construct(self, x):
- return self.avgpool(x)
-
-
- def test_compile_avg():
- net = AvgNet(3, 1)
- x = Tensor(np.ones([1, 3, 16, 50]).astype(np.float32))
- _executor.compile(net, x)
-
-
- class MaxNet(nn.Cell):
- """ MaxNet definition """
-
- def __init__(self,
- kernel_size,
- stride=None,
- padding=0):
- _ = padding
- super(MaxNet, self).__init__()
- self.maxpool = nn.MaxPool2d(kernel_size,
- stride)
-
- def construct(self, x):
- return self.maxpool(x)
-
-
- def test_compile_max():
- net = MaxNet(3, stride=1, padding=0)
- x = Tensor(np.random.randint(0, 255, [1, 3, 6, 6]).astype(np.float32))
- _executor.compile(net, x)
-
-
- class Avg1dNet(nn.Cell):
- def __init__(self,
- kernel_size,
- stride=None):
- super(Avg1dNet, self).__init__()
- self.avg1d = nn.AvgPool1d(kernel_size, stride)
-
- def construct(self, x):
- return self.avg1d(x)
-
-
- def test_avg1d():
- net = Avg1dNet(6, 1)
- input_ = Tensor(np.random.randint(0, 255, [1, 3, 6]).astype(np.float32))
- _executor.compile(net, input_)
|