You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_pooling.py 2.2 kB

5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. test pooling api
  17. """
  18. import numpy as np
  19. import mindspore.nn as nn
  20. from mindspore import Tensor
  21. from mindspore.common.api import _executor
  22. class AvgNet(nn.Cell):
  23. def __init__(self,
  24. kernel_size,
  25. stride=None):
  26. super(AvgNet, self).__init__()
  27. self.avgpool = nn.AvgPool2d(kernel_size, stride)
  28. def construct(self, x):
  29. return self.avgpool(x)
  30. def test_compile_avg():
  31. net = AvgNet(3, 1)
  32. x = Tensor(np.ones([1, 3, 16, 50]).astype(np.float32))
  33. _executor.compile(net, x)
  34. class MaxNet(nn.Cell):
  35. """ MaxNet definition """
  36. def __init__(self,
  37. kernel_size,
  38. stride=None,
  39. padding=0):
  40. _ = padding
  41. super(MaxNet, self).__init__()
  42. self.maxpool = nn.MaxPool2d(kernel_size,
  43. stride)
  44. def construct(self, x):
  45. return self.maxpool(x)
  46. def test_compile_max():
  47. net = MaxNet(3, stride=1, padding=0)
  48. x = Tensor(np.random.randint(0, 255, [1, 3, 6, 6]).astype(np.float32))
  49. _executor.compile(net, x)
  50. class Avg1dNet(nn.Cell):
  51. def __init__(self,
  52. kernel_size,
  53. stride=None):
  54. super(Avg1dNet, self).__init__()
  55. self.avg1d = nn.AvgPool1d(kernel_size, stride)
  56. def construct(self, x):
  57. return self.avg1d(x)
  58. def test_avg1d():
  59. net = Avg1dNet(6, 1)
  60. input_ = Tensor(np.random.randint(0, 255, [1, 3, 6]).astype(np.float32))
  61. _executor.compile(net, input_)