|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- from collections import Counter
- import numpy as np
-
- import mindspore.nn as nn
- from mindspore import Tensor, Parameter
- from mindspore.common import dtype as mstype
- from mindspore.common.api import _executor
- from mindspore.nn import TrainOneStepCell, WithLossCell
- from mindspore.nn.optim import LARS, Momentum
- from mindspore.ops import operations as P
-
-
- def multisteplr(total_steps, milestone, base_lr=0.9, gamma=0.1, dtype=mstype.float32):
- lr = []
- milestone = Counter(milestone)
-
- for step in range(total_steps):
- base_lr = base_lr * gamma ** milestone[step]
- lr.append(base_lr)
- return Tensor(np.array(lr), dtype)
-
-
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight")
- self.bias = Parameter(Tensor(np.ones([10]).astype((np.float32))), name="bias")
- self.matmul = P.MatMul()
- self.biasAdd = P.BiasAdd()
-
- def construct(self, x):
- x = self.biasAdd(self.matmul(x, self.weight), self.bias)
- return x
-
-
- def test_lars_multi_step_lr():
- inputs = Tensor(np.ones([1, 64]).astype(np.float32))
- label = Tensor(np.zeros([1, 10]).astype(np.float32))
- net = Net()
- net.set_train()
- loss = nn.SoftmaxCrossEntropyWithLogits()
-
- lr = multisteplr(10, [2, 6])
- SGD = Momentum(net.trainable_params(), lr, 0.9)
- optimizer = LARS(SGD, epsilon=1e-08, coefficient=0.02, use_clip=True,
- lars_filter=lambda x: 'bn' not in x.name)
-
- net_with_loss = WithLossCell(net, loss)
- train_network = TrainOneStepCell(net_with_loss, optimizer)
- _executor.compile(train_network, inputs, label)
-
-
- def test_lars_float_lr():
- inputs = Tensor(np.ones([1, 64]).astype(np.float32))
- label = Tensor(np.zeros([1, 10]).astype(np.float32))
- net = Net()
- net.set_train()
- loss = nn.SoftmaxCrossEntropyWithLogits()
-
- lr = 0.1
- SGD = Momentum(net.trainable_params(), lr, 0.9)
- optimizer = LARS(SGD, epsilon=1e-08, coefficient=0.02,
- lars_filter=lambda x: 'bn' not in x.name)
-
- net_with_loss = WithLossCell(net, loss)
- train_network = TrainOneStepCell(net_with_loss, optimizer)
- _executor.compile(train_network, inputs, label)
|