You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_lars.py 2.9 kB

5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. from collections import Counter
  16. import numpy as np
  17. import mindspore.nn as nn
  18. from mindspore import Tensor, Parameter
  19. from mindspore.common import dtype as mstype
  20. from mindspore.common.api import _executor
  21. from mindspore.nn import TrainOneStepCell, WithLossCell
  22. from mindspore.nn.optim import LARS, Momentum
  23. from mindspore.ops import operations as P
  24. def multisteplr(total_steps, milestone, base_lr=0.9, gamma=0.1, dtype=mstype.float32):
  25. lr = []
  26. milestone = Counter(milestone)
  27. for step in range(total_steps):
  28. base_lr = base_lr * gamma ** milestone[step]
  29. lr.append(base_lr)
  30. return Tensor(np.array(lr), dtype)
  31. class Net(nn.Cell):
  32. def __init__(self):
  33. super(Net, self).__init__()
  34. self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight")
  35. self.bias = Parameter(Tensor(np.ones([10]).astype((np.float32))), name="bias")
  36. self.matmul = P.MatMul()
  37. self.biasAdd = P.BiasAdd()
  38. def construct(self, x):
  39. x = self.biasAdd(self.matmul(x, self.weight), self.bias)
  40. return x
  41. def test_lars_multi_step_lr():
  42. inputs = Tensor(np.ones([1, 64]).astype(np.float32))
  43. label = Tensor(np.zeros([1, 10]).astype(np.float32))
  44. net = Net()
  45. net.set_train()
  46. loss = nn.SoftmaxCrossEntropyWithLogits()
  47. lr = multisteplr(10, [2, 6])
  48. SGD = Momentum(net.trainable_params(), lr, 0.9)
  49. optimizer = LARS(SGD, epsilon=1e-08, coefficient=0.02, use_clip=True,
  50. lars_filter=lambda x: 'bn' not in x.name)
  51. net_with_loss = WithLossCell(net, loss)
  52. train_network = TrainOneStepCell(net_with_loss, optimizer)
  53. _executor.compile(train_network, inputs, label)
  54. def test_lars_float_lr():
  55. inputs = Tensor(np.ones([1, 64]).astype(np.float32))
  56. label = Tensor(np.zeros([1, 10]).astype(np.float32))
  57. net = Net()
  58. net.set_train()
  59. loss = nn.SoftmaxCrossEntropyWithLogits()
  60. lr = 0.1
  61. SGD = Momentum(net.trainable_params(), lr, 0.9)
  62. optimizer = LARS(SGD, epsilon=1e-08, coefficient=0.02,
  63. lars_filter=lambda x: 'bn' not in x.name)
  64. net_with_loss = WithLossCell(net, loss)
  65. train_network = TrainOneStepCell(net_with_loss, optimizer)
  66. _executor.compile(train_network, inputs, label)