|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- import numpy as np
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.vision.c_transforms as vision
-
- DATA_DIR = "../data/dataset/testCOCO/train/"
- DATA_DIR_2 = "../data/dataset/testCOCO/train"
- ANNOTATION_FILE = "../data/dataset/testCOCO/annotations/train.json"
- KEYPOINT_FILE = "../data/dataset/testCOCO/annotations/key_point.json"
- PANOPTIC_FILE = "../data/dataset/testCOCO/annotations/panoptic.json"
- INVALID_FILE = "../data/dataset/testCOCO/annotations/invalid.json"
- LACKOFIMAGE_FILE = "../data/dataset/testCOCO/annotations/lack_of_images.json"
- INVALID_CATEGORY_ID_FILE = "../data/dataset/testCOCO/annotations/invalid_category_id.json"
-
- def test_coco_detection():
- data1 = ds.CocoDataset(DATA_DIR, annotation_file=ANNOTATION_FILE, task="Detection",
- decode=True, shuffle=False)
- num_iter = 0
- image_shape = []
- bbox = []
- category_id = []
- for data in data1.create_dict_iterator():
- image_shape.append(data["image"].shape)
- bbox.append(data["bbox"])
- category_id.append(data["category_id"])
- num_iter += 1
- assert num_iter == 6
- assert image_shape[0] == (2268, 4032, 3)
- assert image_shape[1] == (561, 595, 3)
- assert image_shape[2] == (607, 585, 3)
- assert image_shape[3] == (642, 675, 3)
- assert image_shape[4] == (2268, 4032, 3)
- assert image_shape[5] == (2268, 4032, 3)
- assert np.array_equal(np.array([[10., 10., 10., 10.], [70., 70., 70., 70.]]), bbox[0])
- assert np.array_equal(np.array([[20., 20., 20., 20.], [80., 80., 80.0, 80.]]), bbox[1])
- assert np.array_equal(np.array([[30.0, 30.0, 30.0, 30.]]), bbox[2])
- assert np.array_equal(np.array([[40., 40., 40., 40.]]), bbox[3])
- assert np.array_equal(np.array([[50., 50., 50., 50.]]), bbox[4])
- assert np.array_equal(np.array([[60., 60., 60., 60.]]), bbox[5])
- assert np.array_equal(np.array([[1], [7]]), category_id[0])
- assert np.array_equal(np.array([[2], [8]]), category_id[1])
- assert np.array_equal(np.array([[3]]), category_id[2])
- assert np.array_equal(np.array([[4]]), category_id[3])
- assert np.array_equal(np.array([[5]]), category_id[4])
- assert np.array_equal(np.array([[6]]), category_id[5])
-
- def test_coco_stuff():
- data1 = ds.CocoDataset(DATA_DIR, annotation_file=ANNOTATION_FILE, task="Stuff",
- decode=True, shuffle=False)
- num_iter = 0
- image_shape = []
- segmentation = []
- iscrowd = []
- for data in data1.create_dict_iterator():
- image_shape.append(data["image"].shape)
- segmentation.append(data["segmentation"])
- iscrowd.append(data["iscrowd"])
- num_iter += 1
- assert num_iter == 6
- assert image_shape[0] == (2268, 4032, 3)
- assert image_shape[1] == (561, 595, 3)
- assert image_shape[2] == (607, 585, 3)
- assert image_shape[3] == (642, 675, 3)
- assert image_shape[4] == (2268, 4032, 3)
- assert image_shape[5] == (2268, 4032, 3)
- assert np.array_equal(np.array([[10., 12., 13., 14., 15., 16., 17., 18., 19., 20.],
- [70., 72., 73., 74., 75., -1., -1., -1., -1., -1.]]),
- segmentation[0])
- assert np.array_equal(np.array([[0], [0]]), iscrowd[0])
- assert np.array_equal(np.array([[20.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0],
- [10.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, -1.0]]),
- segmentation[1])
- assert np.array_equal(np.array([[0], [1]]), iscrowd[1])
- assert np.array_equal(np.array([[40., 42., 43., 44., 45., 46., 47., 48., 49., 40., 41., 42.]]), segmentation[2])
- assert np.array_equal(np.array([[0]]), iscrowd[2])
- assert np.array_equal(np.array([[50., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63.]]),
- segmentation[3])
- assert np.array_equal(np.array([[0]]), iscrowd[3])
- assert np.array_equal(np.array([[60., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74.]]),
- segmentation[4])
- assert np.array_equal(np.array([[0]]), iscrowd[4])
- assert np.array_equal(np.array([[60., 62., 63., 64., 65., 66., 67.], [68., 69., 70., 71., 72., 73., 74.]]),
- segmentation[5])
- assert np.array_equal(np.array([[0]]), iscrowd[5])
-
- def test_coco_keypoint():
- data1 = ds.CocoDataset(DATA_DIR, annotation_file=KEYPOINT_FILE, task="Keypoint",
- decode=True, shuffle=False)
- num_iter = 0
- image_shape = []
- keypoints = []
- num_keypoints = []
- for data in data1.create_dict_iterator():
- image_shape.append(data["image"].shape)
- keypoints.append(data["keypoints"])
- num_keypoints.append(data["num_keypoints"])
- num_iter += 1
- assert num_iter == 2
- assert image_shape[0] == (2268, 4032, 3)
- assert image_shape[1] == (561, 595, 3)
- assert np.array_equal(np.array([[368., 61., 1., 369., 52., 2., 0., 0., 0., 382., 48., 2., 0., 0., 0., 368., 84., 2.,
- 435., 81., 2., 362., 125., 2., 446., 125., 2., 360., 153., 2., 0., 0., 0., 397.,
- 167., 1., 439., 166., 1., 369., 193., 2., 461., 234., 2., 361., 246., 2., 474.,
- 287., 2.]]), keypoints[0])
- assert np.array_equal(np.array([[14]]), num_keypoints[0])
- assert np.array_equal(np.array([[244., 139., 2., 0., 0., 0., 226., 118., 2., 0., 0., 0., 154., 159., 2., 143., 261.,
- 2., 135., 312., 2., 271., 423., 2., 184., 530., 2., 261., 280., 2., 347., 592., 2.,
- 0., 0., 0., 123., 596., 2., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]),
- keypoints[1])
- assert np.array_equal(np.array([[10]]), num_keypoints[1])
-
- def test_coco_panoptic():
- data1 = ds.CocoDataset(DATA_DIR, annotation_file=PANOPTIC_FILE, task="Panoptic", decode=True, shuffle=False)
- num_iter = 0
- image_shape = []
- bbox = []
- category_id = []
- iscrowd = []
- area = []
- for data in data1.create_dict_iterator():
- image_shape.append(data["image"].shape)
- bbox.append(data["bbox"])
- category_id.append(data["category_id"])
- iscrowd.append(data["iscrowd"])
- area.append(data["area"])
- num_iter += 1
- assert num_iter == 2
- assert image_shape[0] == (2268, 4032, 3)
- assert np.array_equal(np.array([[472, 173, 36, 48], [340, 22, 154, 301], [486, 183, 30, 35]]), bbox[0])
- assert np.array_equal(np.array([[1], [1], [2]]), category_id[0])
- assert np.array_equal(np.array([[0], [0], [0]]), iscrowd[0])
- assert np.array_equal(np.array([[705], [14062], [626]]), area[0])
- assert image_shape[1] == (642, 675, 3)
- assert np.array_equal(np.array([[103, 133, 229, 422], [243, 175, 93, 164]]), bbox[1])
- assert np.array_equal(np.array([[1], [3]]), category_id[1])
- assert np.array_equal(np.array([[0], [0]]), iscrowd[1])
- assert np.array_equal(np.array([[43102], [6079]]), area[1])
-
- def test_coco_detection_classindex():
- data1 = ds.CocoDataset(DATA_DIR, annotation_file=ANNOTATION_FILE, task="Detection", decode=True)
- class_index = data1.get_class_indexing()
- assert class_index == {'person': [1], 'bicycle': [2], 'car': [3], 'cat': [4], 'dog': [5], 'monkey': [6],
- 'bag': [7], 'orange': [8]}
- num_iter = 0
- for _ in data1.__iter__():
- num_iter += 1
- assert num_iter == 6
-
- def test_coco_panootic_classindex():
- data1 = ds.CocoDataset(DATA_DIR, annotation_file=PANOPTIC_FILE, task="Panoptic", decode=True)
- class_index = data1.get_class_indexing()
- assert class_index == {'person': [1, 1], 'bicycle': [2, 1], 'car': [3, 1]}
- num_iter = 0
- for _ in data1.__iter__():
- num_iter += 1
- assert num_iter == 2
-
- def test_coco_case_0():
- data1 = ds.CocoDataset(DATA_DIR, annotation_file=ANNOTATION_FILE, task="Detection", decode=True)
- data1 = data1.shuffle(10)
- data1 = data1.batch(3, pad_info={})
- num_iter = 0
- for _ in data1.create_dict_iterator():
- num_iter += 1
- assert num_iter == 2
-
- def test_coco_case_1():
- data1 = ds.CocoDataset(DATA_DIR, annotation_file=ANNOTATION_FILE, task="Detection", decode=True)
- sizes = [0.5, 0.5]
- randomize = False
- dataset1, dataset2 = data1.split(sizes=sizes, randomize=randomize)
-
- num_iter = 0
- for _ in dataset1.create_dict_iterator():
- num_iter += 1
- assert num_iter == 3
- num_iter = 0
- for _ in dataset2.create_dict_iterator():
- num_iter += 1
- assert num_iter == 3
-
- def test_coco_case_2():
- data1 = ds.CocoDataset(DATA_DIR, annotation_file=ANNOTATION_FILE, task="Detection", decode=True)
- resize_op = vision.Resize((224, 224))
-
- data1 = data1.map(input_columns=["image"], operations=resize_op)
- data1 = data1.repeat(4)
- num_iter = 0
- for _ in data1.__iter__():
- num_iter += 1
- assert num_iter == 24
-
- def test_coco_case_3():
- data1 = ds.CocoDataset(DATA_DIR_2, annotation_file=ANNOTATION_FILE, task="Detection", decode=True)
- resize_op = vision.Resize((224, 224))
-
- data1 = data1.map(input_columns=["image"], operations=resize_op)
- data1 = data1.repeat(4)
- num_iter = 0
- for _ in data1.__iter__():
- num_iter += 1
- assert num_iter == 24
-
- def test_coco_case_exception():
- try:
- data1 = ds.CocoDataset("path_not_exist/", annotation_file=ANNOTATION_FILE, task="Detection")
- for _ in data1.__iter__():
- pass
- assert False
- except ValueError as e:
- assert "does not exist or permission denied" in str(e)
-
- try:
- data1 = ds.CocoDataset(DATA_DIR, annotation_file="./file_not_exist", task="Detection")
- for _ in data1.__iter__():
- pass
- assert False
- except ValueError as e:
- assert "does not exist or permission denied" in str(e)
-
- try:
- data1 = ds.CocoDataset(DATA_DIR, annotation_file=ANNOTATION_FILE, task="Invalid task")
- for _ in data1.__iter__():
- pass
- assert False
- except ValueError as e:
- assert "Invalid task type" in str(e)
-
- try:
- data1 = ds.CocoDataset(DATA_DIR, annotation_file=LACKOFIMAGE_FILE, task="Detection")
- for _ in data1.__iter__():
- pass
- assert False
- except RuntimeError as e:
- assert "Invalid node found in json" in str(e)
-
- try:
- data1 = ds.CocoDataset(DATA_DIR, annotation_file=INVALID_CATEGORY_ID_FILE, task="Detection")
- for _ in data1.__iter__():
- pass
- assert False
- except RuntimeError as e:
- assert "category_id can't find in categories" in str(e)
-
- try:
- data1 = ds.CocoDataset(DATA_DIR, annotation_file=INVALID_FILE, task="Detection")
- for _ in data1.__iter__():
- pass
- assert False
- except RuntimeError as e:
- assert "json.exception.parse_error" in str(e)
-
- try:
- sampler = ds.PKSampler(3)
- data1 = ds.CocoDataset(DATA_DIR, annotation_file=INVALID_FILE, task="Detection", sampler=sampler)
- for _ in data1.__iter__():
- pass
- assert False
- except ValueError as e:
- assert "CocoDataset doesn't support PKSampler" in str(e)
-
-
- if __name__ == '__main__':
- test_coco_detection()
- test_coco_stuff()
- test_coco_keypoint()
- test_coco_panoptic()
- test_coco_detection_classindex()
- test_coco_panootic_classindex()
- test_coco_case_0()
- test_coco_case_1()
- test_coco_case_2()
- test_coco_case_3()
- test_coco_case_exception()
|