You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_datasets_coco.py 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. import numpy as np
  16. import mindspore.dataset as ds
  17. import mindspore.dataset.transforms.vision.c_transforms as vision
  18. DATA_DIR = "../data/dataset/testCOCO/train/"
  19. DATA_DIR_2 = "../data/dataset/testCOCO/train"
  20. ANNOTATION_FILE = "../data/dataset/testCOCO/annotations/train.json"
  21. KEYPOINT_FILE = "../data/dataset/testCOCO/annotations/key_point.json"
  22. PANOPTIC_FILE = "../data/dataset/testCOCO/annotations/panoptic.json"
  23. INVALID_FILE = "../data/dataset/testCOCO/annotations/invalid.json"
  24. LACKOFIMAGE_FILE = "../data/dataset/testCOCO/annotations/lack_of_images.json"
  25. INVALID_CATEGORY_ID_FILE = "../data/dataset/testCOCO/annotations/invalid_category_id.json"
  26. def test_coco_detection():
  27. data1 = ds.CocoDataset(DATA_DIR, annotation_file=ANNOTATION_FILE, task="Detection",
  28. decode=True, shuffle=False)
  29. num_iter = 0
  30. image_shape = []
  31. bbox = []
  32. category_id = []
  33. for data in data1.create_dict_iterator():
  34. image_shape.append(data["image"].shape)
  35. bbox.append(data["bbox"])
  36. category_id.append(data["category_id"])
  37. num_iter += 1
  38. assert num_iter == 6
  39. assert image_shape[0] == (2268, 4032, 3)
  40. assert image_shape[1] == (561, 595, 3)
  41. assert image_shape[2] == (607, 585, 3)
  42. assert image_shape[3] == (642, 675, 3)
  43. assert image_shape[4] == (2268, 4032, 3)
  44. assert image_shape[5] == (2268, 4032, 3)
  45. assert np.array_equal(np.array([[10., 10., 10., 10.], [70., 70., 70., 70.]]), bbox[0])
  46. assert np.array_equal(np.array([[20., 20., 20., 20.], [80., 80., 80.0, 80.]]), bbox[1])
  47. assert np.array_equal(np.array([[30.0, 30.0, 30.0, 30.]]), bbox[2])
  48. assert np.array_equal(np.array([[40., 40., 40., 40.]]), bbox[3])
  49. assert np.array_equal(np.array([[50., 50., 50., 50.]]), bbox[4])
  50. assert np.array_equal(np.array([[60., 60., 60., 60.]]), bbox[5])
  51. assert np.array_equal(np.array([[1], [7]]), category_id[0])
  52. assert np.array_equal(np.array([[2], [8]]), category_id[1])
  53. assert np.array_equal(np.array([[3]]), category_id[2])
  54. assert np.array_equal(np.array([[4]]), category_id[3])
  55. assert np.array_equal(np.array([[5]]), category_id[4])
  56. assert np.array_equal(np.array([[6]]), category_id[5])
  57. def test_coco_stuff():
  58. data1 = ds.CocoDataset(DATA_DIR, annotation_file=ANNOTATION_FILE, task="Stuff",
  59. decode=True, shuffle=False)
  60. num_iter = 0
  61. image_shape = []
  62. segmentation = []
  63. iscrowd = []
  64. for data in data1.create_dict_iterator():
  65. image_shape.append(data["image"].shape)
  66. segmentation.append(data["segmentation"])
  67. iscrowd.append(data["iscrowd"])
  68. num_iter += 1
  69. assert num_iter == 6
  70. assert image_shape[0] == (2268, 4032, 3)
  71. assert image_shape[1] == (561, 595, 3)
  72. assert image_shape[2] == (607, 585, 3)
  73. assert image_shape[3] == (642, 675, 3)
  74. assert image_shape[4] == (2268, 4032, 3)
  75. assert image_shape[5] == (2268, 4032, 3)
  76. assert np.array_equal(np.array([[10., 12., 13., 14., 15., 16., 17., 18., 19., 20.],
  77. [70., 72., 73., 74., 75., -1., -1., -1., -1., -1.]]),
  78. segmentation[0])
  79. assert np.array_equal(np.array([[0], [0]]), iscrowd[0])
  80. assert np.array_equal(np.array([[20.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0],
  81. [10.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, -1.0]]),
  82. segmentation[1])
  83. assert np.array_equal(np.array([[0], [1]]), iscrowd[1])
  84. assert np.array_equal(np.array([[40., 42., 43., 44., 45., 46., 47., 48., 49., 40., 41., 42.]]), segmentation[2])
  85. assert np.array_equal(np.array([[0]]), iscrowd[2])
  86. assert np.array_equal(np.array([[50., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63.]]),
  87. segmentation[3])
  88. assert np.array_equal(np.array([[0]]), iscrowd[3])
  89. assert np.array_equal(np.array([[60., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74.]]),
  90. segmentation[4])
  91. assert np.array_equal(np.array([[0]]), iscrowd[4])
  92. assert np.array_equal(np.array([[60., 62., 63., 64., 65., 66., 67.], [68., 69., 70., 71., 72., 73., 74.]]),
  93. segmentation[5])
  94. assert np.array_equal(np.array([[0]]), iscrowd[5])
  95. def test_coco_keypoint():
  96. data1 = ds.CocoDataset(DATA_DIR, annotation_file=KEYPOINT_FILE, task="Keypoint",
  97. decode=True, shuffle=False)
  98. num_iter = 0
  99. image_shape = []
  100. keypoints = []
  101. num_keypoints = []
  102. for data in data1.create_dict_iterator():
  103. image_shape.append(data["image"].shape)
  104. keypoints.append(data["keypoints"])
  105. num_keypoints.append(data["num_keypoints"])
  106. num_iter += 1
  107. assert num_iter == 2
  108. assert image_shape[0] == (2268, 4032, 3)
  109. assert image_shape[1] == (561, 595, 3)
  110. assert np.array_equal(np.array([[368., 61., 1., 369., 52., 2., 0., 0., 0., 382., 48., 2., 0., 0., 0., 368., 84., 2.,
  111. 435., 81., 2., 362., 125., 2., 446., 125., 2., 360., 153., 2., 0., 0., 0., 397.,
  112. 167., 1., 439., 166., 1., 369., 193., 2., 461., 234., 2., 361., 246., 2., 474.,
  113. 287., 2.]]), keypoints[0])
  114. assert np.array_equal(np.array([[14]]), num_keypoints[0])
  115. assert np.array_equal(np.array([[244., 139., 2., 0., 0., 0., 226., 118., 2., 0., 0., 0., 154., 159., 2., 143., 261.,
  116. 2., 135., 312., 2., 271., 423., 2., 184., 530., 2., 261., 280., 2., 347., 592., 2.,
  117. 0., 0., 0., 123., 596., 2., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]),
  118. keypoints[1])
  119. assert np.array_equal(np.array([[10]]), num_keypoints[1])
  120. def test_coco_panoptic():
  121. data1 = ds.CocoDataset(DATA_DIR, annotation_file=PANOPTIC_FILE, task="Panoptic", decode=True, shuffle=False)
  122. num_iter = 0
  123. image_shape = []
  124. bbox = []
  125. category_id = []
  126. iscrowd = []
  127. area = []
  128. for data in data1.create_dict_iterator():
  129. image_shape.append(data["image"].shape)
  130. bbox.append(data["bbox"])
  131. category_id.append(data["category_id"])
  132. iscrowd.append(data["iscrowd"])
  133. area.append(data["area"])
  134. num_iter += 1
  135. assert num_iter == 2
  136. assert image_shape[0] == (2268, 4032, 3)
  137. assert np.array_equal(np.array([[472, 173, 36, 48], [340, 22, 154, 301], [486, 183, 30, 35]]), bbox[0])
  138. assert np.array_equal(np.array([[1], [1], [2]]), category_id[0])
  139. assert np.array_equal(np.array([[0], [0], [0]]), iscrowd[0])
  140. assert np.array_equal(np.array([[705], [14062], [626]]), area[0])
  141. assert image_shape[1] == (642, 675, 3)
  142. assert np.array_equal(np.array([[103, 133, 229, 422], [243, 175, 93, 164]]), bbox[1])
  143. assert np.array_equal(np.array([[1], [3]]), category_id[1])
  144. assert np.array_equal(np.array([[0], [0]]), iscrowd[1])
  145. assert np.array_equal(np.array([[43102], [6079]]), area[1])
  146. def test_coco_detection_classindex():
  147. data1 = ds.CocoDataset(DATA_DIR, annotation_file=ANNOTATION_FILE, task="Detection", decode=True)
  148. class_index = data1.get_class_indexing()
  149. assert class_index == {'person': [1], 'bicycle': [2], 'car': [3], 'cat': [4], 'dog': [5], 'monkey': [6],
  150. 'bag': [7], 'orange': [8]}
  151. num_iter = 0
  152. for _ in data1.__iter__():
  153. num_iter += 1
  154. assert num_iter == 6
  155. def test_coco_panootic_classindex():
  156. data1 = ds.CocoDataset(DATA_DIR, annotation_file=PANOPTIC_FILE, task="Panoptic", decode=True)
  157. class_index = data1.get_class_indexing()
  158. assert class_index == {'person': [1, 1], 'bicycle': [2, 1], 'car': [3, 1]}
  159. num_iter = 0
  160. for _ in data1.__iter__():
  161. num_iter += 1
  162. assert num_iter == 2
  163. def test_coco_case_0():
  164. data1 = ds.CocoDataset(DATA_DIR, annotation_file=ANNOTATION_FILE, task="Detection", decode=True)
  165. data1 = data1.shuffle(10)
  166. data1 = data1.batch(3, pad_info={})
  167. num_iter = 0
  168. for _ in data1.create_dict_iterator():
  169. num_iter += 1
  170. assert num_iter == 2
  171. def test_coco_case_1():
  172. data1 = ds.CocoDataset(DATA_DIR, annotation_file=ANNOTATION_FILE, task="Detection", decode=True)
  173. sizes = [0.5, 0.5]
  174. randomize = False
  175. dataset1, dataset2 = data1.split(sizes=sizes, randomize=randomize)
  176. num_iter = 0
  177. for _ in dataset1.create_dict_iterator():
  178. num_iter += 1
  179. assert num_iter == 3
  180. num_iter = 0
  181. for _ in dataset2.create_dict_iterator():
  182. num_iter += 1
  183. assert num_iter == 3
  184. def test_coco_case_2():
  185. data1 = ds.CocoDataset(DATA_DIR, annotation_file=ANNOTATION_FILE, task="Detection", decode=True)
  186. resize_op = vision.Resize((224, 224))
  187. data1 = data1.map(input_columns=["image"], operations=resize_op)
  188. data1 = data1.repeat(4)
  189. num_iter = 0
  190. for _ in data1.__iter__():
  191. num_iter += 1
  192. assert num_iter == 24
  193. def test_coco_case_3():
  194. data1 = ds.CocoDataset(DATA_DIR_2, annotation_file=ANNOTATION_FILE, task="Detection", decode=True)
  195. resize_op = vision.Resize((224, 224))
  196. data1 = data1.map(input_columns=["image"], operations=resize_op)
  197. data1 = data1.repeat(4)
  198. num_iter = 0
  199. for _ in data1.__iter__():
  200. num_iter += 1
  201. assert num_iter == 24
  202. def test_coco_case_exception():
  203. try:
  204. data1 = ds.CocoDataset("path_not_exist/", annotation_file=ANNOTATION_FILE, task="Detection")
  205. for _ in data1.__iter__():
  206. pass
  207. assert False
  208. except ValueError as e:
  209. assert "does not exist or permission denied" in str(e)
  210. try:
  211. data1 = ds.CocoDataset(DATA_DIR, annotation_file="./file_not_exist", task="Detection")
  212. for _ in data1.__iter__():
  213. pass
  214. assert False
  215. except ValueError as e:
  216. assert "does not exist or permission denied" in str(e)
  217. try:
  218. data1 = ds.CocoDataset(DATA_DIR, annotation_file=ANNOTATION_FILE, task="Invalid task")
  219. for _ in data1.__iter__():
  220. pass
  221. assert False
  222. except ValueError as e:
  223. assert "Invalid task type" in str(e)
  224. try:
  225. data1 = ds.CocoDataset(DATA_DIR, annotation_file=LACKOFIMAGE_FILE, task="Detection")
  226. for _ in data1.__iter__():
  227. pass
  228. assert False
  229. except RuntimeError as e:
  230. assert "Invalid node found in json" in str(e)
  231. try:
  232. data1 = ds.CocoDataset(DATA_DIR, annotation_file=INVALID_CATEGORY_ID_FILE, task="Detection")
  233. for _ in data1.__iter__():
  234. pass
  235. assert False
  236. except RuntimeError as e:
  237. assert "category_id can't find in categories" in str(e)
  238. try:
  239. data1 = ds.CocoDataset(DATA_DIR, annotation_file=INVALID_FILE, task="Detection")
  240. for _ in data1.__iter__():
  241. pass
  242. assert False
  243. except RuntimeError as e:
  244. assert "json.exception.parse_error" in str(e)
  245. try:
  246. sampler = ds.PKSampler(3)
  247. data1 = ds.CocoDataset(DATA_DIR, annotation_file=INVALID_FILE, task="Detection", sampler=sampler)
  248. for _ in data1.__iter__():
  249. pass
  250. assert False
  251. except ValueError as e:
  252. assert "CocoDataset doesn't support PKSampler" in str(e)
  253. if __name__ == '__main__':
  254. test_coco_detection()
  255. test_coco_stuff()
  256. test_coco_keypoint()
  257. test_coco_panoptic()
  258. test_coco_detection_classindex()
  259. test_coco_panootic_classindex()
  260. test_coco_case_0()
  261. test_coco_case_1()
  262. test_coco_case_2()
  263. test_coco_case_3()
  264. test_coco_case_exception()