|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test BiasAdd """
- import numpy as np
-
- import mindspore.nn as nn
- from mindspore import Tensor, Parameter
- from mindspore.common.initializer import initializer
- from mindspore.ops import operations as P
- from ..ut_filter import non_graph_engine
-
-
- class Net(nn.Cell):
- """Net definition"""
-
- def __init__(self,
- output_channels,
- bias_init='zeros',
- ):
- super(Net, self).__init__()
- self.biasAdd = P.BiasAdd()
-
- if isinstance(bias_init, Tensor):
- if bias_init.dim() != 1 or bias_init.shape[0] != output_channels:
- raise ValueError("bias_init shape error")
-
- self.bias = Parameter(initializer(
- bias_init, [output_channels]), name="bias")
-
- def construct(self, input_x):
- return self.biasAdd(input_x, self.bias)
-
-
- @non_graph_engine
- def test_compile():
- bias_init = Tensor(np.ones([3]).astype(np.float32))
- net = Net(3, bias_init=bias_init)
- input_data = Tensor(np.ones([1, 3, 3, 3], np.float32))
- # since simulator currently not support matMul
- # enable it when staging function is ready
- output = net(input_data)
- print(output.asnumpy())
|