You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_bias_add.py 1.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ test BiasAdd """
  16. import numpy as np
  17. import mindspore.nn as nn
  18. from mindspore import Tensor, Parameter
  19. from mindspore.common.initializer import initializer
  20. from mindspore.ops import operations as P
  21. from ..ut_filter import non_graph_engine
  22. class Net(nn.Cell):
  23. """Net definition"""
  24. def __init__(self,
  25. output_channels,
  26. bias_init='zeros',
  27. ):
  28. super(Net, self).__init__()
  29. self.biasAdd = P.BiasAdd()
  30. if isinstance(bias_init, Tensor):
  31. if bias_init.dim() != 1 or bias_init.shape[0] != output_channels:
  32. raise ValueError("bias_init shape error")
  33. self.bias = Parameter(initializer(
  34. bias_init, [output_channels]), name="bias")
  35. def construct(self, input_x):
  36. return self.biasAdd(input_x, self.bias)
  37. @non_graph_engine
  38. def test_compile():
  39. bias_init = Tensor(np.ones([3]).astype(np.float32))
  40. net = Net(3, bias_init=bias_init)
  41. input_data = Tensor(np.ones([1, 3, 3, 3], np.float32))
  42. # since simulator currently not support matMul
  43. # enable it when staging function is ready
  44. output = net(input_data)
  45. print(output.asnumpy())