|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- ##############test googlenet example on cifar10#################
- python eval.py --data_path=$DATA_HOME --device_id=$DEVICE_ID
- """
- import argparse
-
- import mindspore.nn as nn
- from mindspore import context
- from mindspore.model_zoo.googlenet import GooGLeNet
- from mindspore.nn.optim.momentum import Momentum
- from mindspore.train.model import Model
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
-
- import dataset
- from config import cifar_cfg as cfg
-
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser(description='Cifar10 classification')
- parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
- help='device where the code will be implemented. (Default: Ascend)')
- parser.add_argument('--data_path', type=str, default='./cifar', help='path where the dataset is saved')
- parser.add_argument('--checkpoint_path', type=str, default=None, help='checkpoint file path.')
- parser.add_argument('--device_id', type=int, default=None, help='device id of GPU or Ascend. (Default: None)')
- args_opt = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
- context.set_context(device_id=args_opt.device_id)
-
- net = GooGLeNet(num_classes=cfg.num_classes)
- opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, cfg.momentum,
- weight_decay=cfg.weight_decay)
- loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
- model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
-
- param_dict = load_checkpoint(args_opt.checkpoint_path)
- load_param_into_net(net, param_dict)
- net.set_train(False)
- dataset = dataset.create_dataset(args_opt.data_path, 1, False)
- res = model.eval(dataset)
- print("result: ", res)
|