You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

eval.py 2.5 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. ##############test googlenet example on cifar10#################
  17. python eval.py --data_path=$DATA_HOME --device_id=$DEVICE_ID
  18. """
  19. import argparse
  20. import mindspore.nn as nn
  21. from mindspore import context
  22. from mindspore.model_zoo.googlenet import GooGLeNet
  23. from mindspore.nn.optim.momentum import Momentum
  24. from mindspore.train.model import Model
  25. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  26. import dataset
  27. from config import cifar_cfg as cfg
  28. if __name__ == '__main__':
  29. parser = argparse.ArgumentParser(description='Cifar10 classification')
  30. parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
  31. help='device where the code will be implemented. (Default: Ascend)')
  32. parser.add_argument('--data_path', type=str, default='./cifar', help='path where the dataset is saved')
  33. parser.add_argument('--checkpoint_path', type=str, default=None, help='checkpoint file path.')
  34. parser.add_argument('--device_id', type=int, default=None, help='device id of GPU or Ascend. (Default: None)')
  35. args_opt = parser.parse_args()
  36. context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
  37. context.set_context(device_id=args_opt.device_id)
  38. net = GooGLeNet(num_classes=cfg.num_classes)
  39. opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, cfg.momentum,
  40. weight_decay=cfg.weight_decay)
  41. loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
  42. model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
  43. param_dict = load_checkpoint(args_opt.checkpoint_path)
  44. load_param_into_net(net, param_dict)
  45. net.set_train(False)
  46. dataset = dataset.create_dataset(args_opt.data_path, 1, False)
  47. res = model.eval(dataset)
  48. print("result: ", res)