|
- import pytest
- import numpy as np
- import mindspore.context as context
- from mindspore import Tensor, Parameter
- from mindspore.nn import Cell
- from mindspore.nn.graph_kernels import LambUpdateWithLR, LambNextMV
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
- class LambNet(Cell):
- def __init__(self, i2, i5, x6):
- super(LambNet, self).__init__()
- self.i2 = Parameter(i2, name='i2')
- self.i5 = Parameter(i5, name='i5')
- self.x6 = Parameter(x6, name='x6')
- self.lamb_next = LambNextMV()
- self.lamb_update = LambUpdateWithLR()
-
- def construct(self, i1, i3, i4, i6, i7, i8, i9, ix0, ix1, ix2, ix3,
- x1, x2, x3, x4, x5, gy, se, my):
- return self.lamb_next(i1, self.i2, i3, i4, self.i5, i6, i7, i8, i9, ix0,
- ix1, ix2, ix3), \
- self.lamb_update(x1, x2, x3, x4, x5, self.x6, gy, se, my)
-
- def LambUpdateNumpy(x1, x2, x3, x4, x5, x6, gy, se, my):
- trust_ratio = np.where(np.greater(x2, gy),
- np.where(np.greater(x1, gy), np.divide(x2, x3), se),
- se)
- trust_ratio = np.maximum(np.minimum(trust_ratio, my), gy)
- update_with_lr = trust_ratio * x4 * x5
- next_param = x6 - np.reshape(update_with_lr, x6.shape)
- return next_param
-
- def LambNextMVNumpy(i1, i2, i3, i4, i5, i6, i7, i8, i9, x0, x1, x2, x3):
- m_fp32 = i5.astype(np.float32)
- v_fp32 = i2.astype(np.float32)
- next_m = i8 * m_fp32 + i9 * i4
- next_v = x0 * v_fp32 + x1 * i1
- next_mm = next_m / i6
- next_vv = next_v / i3
- update = next_mm / (np.sqrt(next_vv) + x3)
- add3 = next_mm / np.sqrt(next_vv + x3) + x2 * i7
- return add3, next_m, next_v, update
-
-
- def tensor_all(*args):
- res = [Tensor(a) for a in args]
- return res
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_graph_kernel_lamb():
- shape = [1, 16]
- oshape = [1]
- np.random.seed(0)
- x1 = np.random.normal(0, 1, oshape).astype(np.float32)
- x2 = np.random.normal(0, 1, oshape).astype(np.float32)
- x3 = np.random.normal(0, 1, oshape).astype(np.float32)
- x4 = np.random.normal(0, 1, oshape).astype(np.float32)
- x5 = np.random.normal(0, 1, shape).astype(np.float32)
- x6 = np.random.normal(0, 1, shape).astype(np.float32)
- gy = np.random.normal(0, 1, oshape).astype(np.float32)
- se = np.random.normal(0, 1, oshape).astype(np.float32)
- my = np.random.normal(0, 1, oshape).astype(np.float32)
-
- tx1, tx2, tx3, tx4, tx5, tx6, tgy, tse, tmy = tensor_all(
- x1, x2, x3, x4, x5, x6, gy, se, my)
-
- np.random.seed(1)
- i1 = np.abs(np.random.normal(0, 1, shape)).astype(np.float32)
- i2 = np.abs(np.random.normal(0, 1, shape)).astype(np.float32)
- i3 = np.abs(np.random.normal(0, 1, shape)).astype(np.float32)
- i4 = np.random.normal(0, 1, shape).astype(np.float32)
- i5 = np.random.normal(0, 1, shape).astype(np.float32)
- i6 = np.abs(np.random.normal(0, 1, shape)).astype(np.float32)
- i7 = np.random.normal(0, 1, shape).astype(np.float32)
- i8 = np.random.normal(0, 1, shape).astype(np.float32)
- i9 = np.random.normal(0, 1, shape).astype(np.float32)
- ix0 = np.abs(np.random.normal(0, 1, shape)).astype(np.float32)
- ix1 = np.abs(np.random.normal(0, 1, shape)).astype(np.float32)
- ix2 = np.random.normal(0, 1, shape).astype(np.float32)
- ix3 = np.ones(shape).astype(np.float32) * 1e-6
-
- ti1, ti2, ti3, ti4, ti5, ti6, ti7, ti8, ti9, tix0, tix1, tix2, tix3 = \
- tensor_all(i1, i2, i3, i4, i5, i6, i7, i8, i9, ix0, ix1, ix2, ix3)
-
- context.set_context(enable_graph_kernel=True)
-
- net = LambNet(ti2, ti5, tx6)
- (wa3, wup), _ = net(ti1, ti3, ti4, ti6, ti7, ti8, ti9, tix0, tix1, tix2, tix3,
- tx1, tx2, tx3, tx4, tx5, tgy, tse, tmy)
-
- wi2 = net.i2.data.asnumpy().copy()
- wi5 = net.i5.data.asnumpy().copy()
- ares = net.x6.data.asnumpy().copy()
-
- context.set_context(enable_graph_kernel=False)
-
- a3, a0, a1, up = LambNextMVNumpy(i1, i2, i3, i4, i5, i6, i7, i8, i9, ix0,
- ix1, ix2, ix3)
-
- np_res = LambUpdateNumpy(x1, x2, x3, x4, x5, x6, gy, se, my)
-
- rtol = 0.0001
- atol = 0.0001
-
- wres = (wa3.asnumpy().copy(), wi5, wi2, wup.asnumpy().copy())
- bres = (a3, a0, a1, up)
-
- cmp_res = list(map(lambda x, y: np.allclose(x, y, rtol, atol),
- wres, bres))
-
- assert all(cmp_res) and np.allclose(ares, np_res, rtol, atol)
|