import pytest import numpy as np import mindspore.context as context from mindspore import Tensor, Parameter from mindspore.nn import Cell from mindspore.nn.graph_kernels import LambUpdateWithLR, LambNextMV context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") class LambNet(Cell): def __init__(self, i2, i5, x6): super(LambNet, self).__init__() self.i2 = Parameter(i2, name='i2') self.i5 = Parameter(i5, name='i5') self.x6 = Parameter(x6, name='x6') self.lamb_next = LambNextMV() self.lamb_update = LambUpdateWithLR() def construct(self, i1, i3, i4, i6, i7, i8, i9, ix0, ix1, ix2, ix3, x1, x2, x3, x4, x5, gy, se, my): return self.lamb_next(i1, self.i2, i3, i4, self.i5, i6, i7, i8, i9, ix0, ix1, ix2, ix3), \ self.lamb_update(x1, x2, x3, x4, x5, self.x6, gy, se, my) def LambUpdateNumpy(x1, x2, x3, x4, x5, x6, gy, se, my): trust_ratio = np.where(np.greater(x2, gy), np.where(np.greater(x1, gy), np.divide(x2, x3), se), se) trust_ratio = np.maximum(np.minimum(trust_ratio, my), gy) update_with_lr = trust_ratio * x4 * x5 next_param = x6 - np.reshape(update_with_lr, x6.shape) return next_param def LambNextMVNumpy(i1, i2, i3, i4, i5, i6, i7, i8, i9, x0, x1, x2, x3): m_fp32 = i5.astype(np.float32) v_fp32 = i2.astype(np.float32) next_m = i8 * m_fp32 + i9 * i4 next_v = x0 * v_fp32 + x1 * i1 next_mm = next_m / i6 next_vv = next_v / i3 update = next_mm / (np.sqrt(next_vv) + x3) add3 = next_mm / np.sqrt(next_vv + x3) + x2 * i7 return add3, next_m, next_v, update def tensor_all(*args): res = [Tensor(a) for a in args] return res @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_graph_kernel_lamb(): shape = [1, 16] oshape = [1] np.random.seed(0) x1 = np.random.normal(0, 1, oshape).astype(np.float32) x2 = np.random.normal(0, 1, oshape).astype(np.float32) x3 = np.random.normal(0, 1, oshape).astype(np.float32) x4 = np.random.normal(0, 1, oshape).astype(np.float32) x5 = np.random.normal(0, 1, shape).astype(np.float32) x6 = np.random.normal(0, 1, shape).astype(np.float32) gy = np.random.normal(0, 1, oshape).astype(np.float32) se = np.random.normal(0, 1, oshape).astype(np.float32) my = np.random.normal(0, 1, oshape).astype(np.float32) tx1, tx2, tx3, tx4, tx5, tx6, tgy, tse, tmy = tensor_all( x1, x2, x3, x4, x5, x6, gy, se, my) np.random.seed(1) i1 = np.abs(np.random.normal(0, 1, shape)).astype(np.float32) i2 = np.abs(np.random.normal(0, 1, shape)).astype(np.float32) i3 = np.abs(np.random.normal(0, 1, shape)).astype(np.float32) i4 = np.random.normal(0, 1, shape).astype(np.float32) i5 = np.random.normal(0, 1, shape).astype(np.float32) i6 = np.abs(np.random.normal(0, 1, shape)).astype(np.float32) i7 = np.random.normal(0, 1, shape).astype(np.float32) i8 = np.random.normal(0, 1, shape).astype(np.float32) i9 = np.random.normal(0, 1, shape).astype(np.float32) ix0 = np.abs(np.random.normal(0, 1, shape)).astype(np.float32) ix1 = np.abs(np.random.normal(0, 1, shape)).astype(np.float32) ix2 = np.random.normal(0, 1, shape).astype(np.float32) ix3 = np.ones(shape).astype(np.float32) * 1e-6 ti1, ti2, ti3, ti4, ti5, ti6, ti7, ti8, ti9, tix0, tix1, tix2, tix3 = \ tensor_all(i1, i2, i3, i4, i5, i6, i7, i8, i9, ix0, ix1, ix2, ix3) context.set_context(enable_graph_kernel=True) net = LambNet(ti2, ti5, tx6) (wa3, wup), _ = net(ti1, ti3, ti4, ti6, ti7, ti8, ti9, tix0, tix1, tix2, tix3, tx1, tx2, tx3, tx4, tx5, tgy, tse, tmy) wi2 = net.i2.data.asnumpy().copy() wi5 = net.i5.data.asnumpy().copy() ares = net.x6.data.asnumpy().copy() context.set_context(enable_graph_kernel=False) a3, a0, a1, up = LambNextMVNumpy(i1, i2, i3, i4, i5, i6, i7, i8, i9, ix0, ix1, ix2, ix3) np_res = LambUpdateNumpy(x1, x2, x3, x4, x5, x6, gy, se, my) rtol = 0.0001 atol = 0.0001 wres = (wa3.asnumpy().copy(), wi5, wi2, wup.asnumpy().copy()) bres = (a3, a0, a1, up) cmp_res = list(map(lambda x, y: np.allclose(x, y, rtol, atol), wres, bres)) assert all(cmp_res) and np.allclose(ares, np_res, rtol, atol)