| @@ -45,8 +45,8 @@ endif() | |||
| if (DEBUG_MODE) | |||
| set(CMAKE_BUILD_TYPE "Debug") | |||
| else() | |||
| add_compile_definitions(MEM_REUSE_DEBUG) | |||
| else() | |||
| set(CMAKE_BUILD_TYPE "Release") | |||
| endif() | |||
| @@ -205,8 +205,8 @@ std::vector<int> GetRuntimePaddingShape(const AnfNodePtr &node, size_t index) { | |||
| if (tensor == nullptr) { | |||
| MS_LOG(EXCEPTION) << " the node[ " << node->DebugString() << "]'s cannot convert "; | |||
| } | |||
| shape = tensor->shape(); | |||
| (void)std::transform(shape.begin(), shape.end(), std::back_inserter(host_shape), IntToSize); | |||
| auto shape_temp = tensor->shape(); | |||
| (void)std::transform(shape_temp.begin(), shape_temp.end(), std::back_inserter(host_shape), IntToSize); | |||
| if (host_shape.empty()) { | |||
| host_shape.push_back(1); | |||
| } | |||
| @@ -18,6 +18,7 @@ | |||
| #include <set> | |||
| #include "common/trans.h" | |||
| #include "common/utils.h" | |||
| #include "pre_activate/common/helper.h" | |||
| #include "utils/utils.h" | |||
| #include "device/kernel_info.h" | |||
| #include "kernel/oplib/oplib.h" | |||
| @@ -346,21 +347,6 @@ CNodePtr InsertCastForInput(const FuncGraphPtr &func_graph, const CNodePtr &cnod | |||
| return new_node; | |||
| } | |||
| AnfNodePtr CreatTupleGetItemNode(const FuncGraphPtr &func_graph, const AnfNodePtr &node, size_t output_idx) { | |||
| auto idx = NewValueNode(SizeToInt(output_idx)); | |||
| MS_EXCEPTION_IF_NULL(idx); | |||
| auto imm = std::make_shared<Int32Imm>(SizeToInt(output_idx)); | |||
| auto abstract_scalar = std::make_shared<abstract::AbstractScalar>(imm); | |||
| idx->set_abstract(abstract_scalar); | |||
| AnfNodePtr tuple_getitem = func_graph->NewCNode({NewValueNode(prim::kPrimTupleGetItem), node, idx}); | |||
| MS_EXCEPTION_IF_NULL(tuple_getitem); | |||
| tuple_getitem->set_scope(node->scope()); | |||
| std::vector<size_t> origin_shape = AnfAlgo::GetOutputInferShape(node, output_idx); | |||
| TypeId origin_type = AnfAlgo::GetOutputInferDataType(node, output_idx); | |||
| AnfAlgo::SetOutputInferTypeAndShape({origin_type}, {origin_shape}, tuple_getitem.get()); | |||
| return tuple_getitem; | |||
| } | |||
| AnfNodePtr CreateMemcpyAsyncOp(const FuncGraphPtr &graph, const AnfNodePtr &node) { | |||
| MS_EXCEPTION_IF_NULL(graph); | |||
| MS_EXCEPTION_IF_NULL(node); | |||
| @@ -64,8 +64,6 @@ AnfNodePtr InsertTransOpForOutput(const FuncGraphPtr &func_graph, const AnfNodeP | |||
| CNodePtr InsertCastForInput(const FuncGraphPtr &func_graph, const CNodePtr &cnode); | |||
| AnfNodePtr CreatTupleGetItemNode(const FuncGraphPtr &func_graph, const AnfNodePtr &node, size_t output_idx); | |||
| AnfNodePtr CreateMemcpyAsyncOp(const FuncGraphPtr &graph, const AnfNodePtr &node); | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| @@ -17,6 +17,7 @@ | |||
| #include <vector> | |||
| #include <memory> | |||
| #include "pre_activate/ascend/ascend_helper.h" | |||
| #include "pre_activate/common/helper.h" | |||
| #include "session/anf_runtime_algorithm.h" | |||
| namespace mindspore { | |||
| @@ -18,6 +18,7 @@ | |||
| #include <string> | |||
| #include "pre_activate/common/optimizer.h" | |||
| #include "pre_activate/pass/convert_const_input_to_attr.h" | |||
| #include "pre_activate/pass/convert_tuple_output_to_maketuple.h" | |||
| #include "pre_activate/pass/convert_const_input_to_tensor_input.h" | |||
| #include "pre_activate/pass/convert_tuple_input_to_dynamic_input.h" | |||
| #include "utils/context/ms_context.h" | |||
| @@ -42,6 +43,7 @@ void BackendCommonOptimization(const std::shared_ptr<session::KernelGraph> &kern | |||
| common_pm->AddPass(std::make_shared<ConvertConstInputToAttr>()); | |||
| common_pm->AddPass(std::make_shared<ConvertConstInputToTensorInput>()); | |||
| common_pm->AddPass(std::make_shared<ConvertTupleInputToDynamicInput>()); | |||
| common_pm->AddPass(std::make_shared<ConvertTupleOutputToMaketuple>()); | |||
| optimizer->AddPassManager(common_pm); | |||
| (void)optimizer->Optimize(kernel_graph); | |||
| kernel_graph->SetExecOrderByDefault(); | |||
| @@ -407,5 +407,20 @@ bool IsUsedByOthers(const FuncGraphPtr &graph, const AnfNodePtr &node) { | |||
| } | |||
| return manager->node_users()[node].size() > 1; | |||
| } | |||
| AnfNodePtr CreatTupleGetItemNode(const FuncGraphPtr &func_graph, const AnfNodePtr &node, size_t output_idx) { | |||
| auto idx = NewValueNode(SizeToInt(output_idx)); | |||
| MS_EXCEPTION_IF_NULL(idx); | |||
| auto imm = std::make_shared<Int32Imm>(SizeToInt(output_idx)); | |||
| auto abstract_scalar = std::make_shared<abstract::AbstractScalar>(imm); | |||
| idx->set_abstract(abstract_scalar); | |||
| AnfNodePtr tuple_getitem = func_graph->NewCNode({NewValueNode(prim::kPrimTupleGetItem), node, idx}); | |||
| MS_EXCEPTION_IF_NULL(tuple_getitem); | |||
| tuple_getitem->set_scope(node->scope()); | |||
| std::vector<size_t> origin_shape = AnfAlgo::GetOutputInferShape(node, output_idx); | |||
| TypeId origin_type = AnfAlgo::GetOutputInferDataType(node, output_idx); | |||
| AnfAlgo::SetOutputInferTypeAndShape({origin_type}, {origin_shape}, tuple_getitem.get()); | |||
| return tuple_getitem; | |||
| } | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| @@ -146,6 +146,8 @@ void HideNopNode(session::KernelGraph *const graph); | |||
| void RemoveNopNode(session::KernelGraph *const graph); | |||
| AnfNodePtr CreatTupleGetItemNode(const FuncGraphPtr &func_graph, const AnfNodePtr &node, size_t output_idx); | |||
| bool IsUsedByOthers(const FuncGraphPtr &graph, const AnfNodePtr &node); | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| @@ -19,6 +19,7 @@ | |||
| #include <memory> | |||
| #include "session/anf_runtime_algorithm.h" | |||
| #include "pre_activate/common/helper.h" | |||
| #include "session/kernel_graph.h" | |||
| namespace mindspore { | |||
| @@ -40,13 +41,7 @@ void ConvertTupleOuputToPlantInputs(const FuncGraphPtr &graph, const AnfNodePtr | |||
| convert_inputs = kernel_graph->SplitTupleValueNodeToNodeList(value_node); | |||
| } else { | |||
| for (size_t index = 0; index < output_size; ++index) { | |||
| auto idx = NewValueNode(SizeToInt(index)); | |||
| MS_EXCEPTION_IF_NULL(idx); | |||
| auto imm = std::make_shared<Int32Imm>(SizeToInt(index)); | |||
| auto abstract_scalar = std::make_shared<abstract::AbstractScalar>(imm); | |||
| idx->set_abstract(abstract_scalar); | |||
| auto tuple_get_item = | |||
| graph->NewCNode(std::vector<AnfNodePtr>{NewValueNode(prim::kPrimTupleGetItem), input_node, idx}); | |||
| auto tuple_get_item = CreatTupleGetItemNode(graph, input_node, index); | |||
| AnfAlgo::SetOutputInferTypeAndShape({AnfAlgo::GetOutputInferDataType(input_node, index)}, | |||
| {AnfAlgo::GetOutputInferShape(input_node, index)}, tuple_get_item.get()); | |||
| convert_inputs.emplace_back(tuple_get_item); | |||
| @@ -0,0 +1,79 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "pre_activate/pass/convert_tuple_output_to_maketuple.h" | |||
| #include <algorithm> | |||
| #include <memory> | |||
| #include "session/anf_runtime_algorithm.h" | |||
| #include "pre_activate/common/helper.h" | |||
| #include "session/kernel_graph.h" | |||
| namespace mindspore { | |||
| namespace opt { | |||
| namespace { | |||
| CNodePtr ConvertTupleInputToMakeTuple(const FuncGraphPtr &graph, const CNodePtr &cnode_ptr) { | |||
| MS_EXCEPTION_IF_NULL(cnode_ptr); | |||
| MS_EXCEPTION_IF_NULL(graph); | |||
| std::vector<AnfNodePtr> convert_inputs = {cnode_ptr->input(0)}; | |||
| for (size_t index = 0; index < AnfAlgo::GetInputTensorNum(cnode_ptr); ++index) { | |||
| auto input_node = AnfAlgo::GetInputNode(cnode_ptr, index); | |||
| if (AnfAlgo::IsTupleOutput(input_node)) { | |||
| std::vector<TypeId> types; | |||
| std::vector<std::vector<size_t>> shapes; | |||
| std::vector<AnfNodePtr> make_tuple_inputs_list = {NewValueNode(prim::kPrimMakeTuple)}; | |||
| for (size_t tuple_out_index = 0; tuple_out_index < AnfAlgo::GetOutputTensorNum(input_node); ++tuple_out_index) { | |||
| make_tuple_inputs_list.emplace_back(CreatTupleGetItemNode(graph, input_node, tuple_out_index)); | |||
| types.push_back(AnfAlgo::GetOutputInferDataType(input_node, tuple_out_index)); | |||
| shapes.emplace_back(AnfAlgo::GetOutputInferShape(input_node, tuple_out_index)); | |||
| } | |||
| auto make_tuple = graph->NewCNode(make_tuple_inputs_list); | |||
| AnfAlgo::SetOutputInferTypeAndShape(types, shapes, make_tuple.get()); | |||
| convert_inputs.emplace_back(make_tuple); | |||
| } else { | |||
| convert_inputs.push_back(input_node); | |||
| } | |||
| } | |||
| cnode_ptr->set_inputs(convert_inputs); | |||
| return cnode_ptr; | |||
| } | |||
| } // namespace | |||
| const BaseRef ConvertTupleOutputToMaketuple::DefinePattern() const { | |||
| VarPtr V = std::make_shared<Var>(); | |||
| VarPtr Xs = std::make_shared<SeqVar>(); | |||
| return VectorRef({V, Xs}); | |||
| } | |||
| const AnfNodePtr ConvertTupleOutputToMaketuple::Process(const FuncGraphPtr &func_graph, const AnfNodePtr &node, | |||
| const EquivPtr &) const { | |||
| if (node == nullptr || !node->isa<CNode>()) { | |||
| return nullptr; | |||
| } | |||
| auto cnode = node->cast<CNodePtr>(); | |||
| MS_EXCEPTION_IF_NULL(cnode); | |||
| if (AnfAlgo::GetCNodeName(cnode) == prim::kPrimTupleGetItem->name()) { | |||
| return nullptr; | |||
| } | |||
| if (std::any_of(cnode->inputs().begin() + 1, cnode->inputs().end(), [](const AnfNodePtr &node) { | |||
| return AnfAlgo::IsTupleOutput(node) && AnfAlgo::GetCNodeName(node) != prim::kPrimMakeTuple->name(); | |||
| })) { | |||
| return ConvertTupleInputToMakeTuple(func_graph, cnode); | |||
| } | |||
| return nullptr; | |||
| } | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,40 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CONVERT_TUPLE_OUTPUT_TO_MAKETUPLE_H | |||
| #define MINDSPORE_CONVERT_TUPLE_OUTPUT_TO_MAKETUPLE_H | |||
| #include <string> | |||
| #include <vector> | |||
| #include "ir/anf.h" | |||
| #include "pre_activate/common/optimizer.h" | |||
| namespace mindspore { | |||
| namespace opt { | |||
| class ConvertTupleOutputToMaketuple : public PatternProcessPass { | |||
| public: | |||
| explicit ConvertTupleOutputToMaketuple(bool multigraph = true) | |||
| : PatternProcessPass("convert_tuple_output_to_maketuple", multigraph) {} | |||
| ~ConvertTupleOutputToMaketuple() override = default; | |||
| const BaseRef DefinePattern() const override; | |||
| const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override; | |||
| }; | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CONVERT_TUPLE_OUTPUT_TO_MAKETUPLE_H | |||
| @@ -239,7 +239,7 @@ std::vector<AnfNodePtr> KernelGraph::SplitTupleValueNodeToNodeList(const ValueNo | |||
| AddValueNodeToGraph(new_value_node); | |||
| convert_inputs.emplace_back(new_value_node); | |||
| } | |||
| if (RemoveValueNodeFromGraph(value_node)) { | |||
| if (!RemoveValueNodeFromGraph(value_node)) { | |||
| MS_LOG(WARNING) << "failed to remove the value_node " << value_node->DebugString(); | |||
| } | |||
| return convert_inputs; | |||
| @@ -0,0 +1,65 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "common/backend_common_test.h" | |||
| #include "ir/anf.h" | |||
| #include "ir/meta_tensor.h" | |||
| #include "debug/anf_ir_dump.h" | |||
| #include "common/py_func_graph_fetcher.h" | |||
| #include "session/anf_runtime_algorithm.h" | |||
| #include "pre_activate/common/optimizer.h" | |||
| #include "pre_activate/common/pass_manager.h" | |||
| #include "pre_activate/pass/convert_tuple_output_to_maketuple.h" | |||
| #include "utils/utils.h" | |||
| namespace mindspore { | |||
| namespace opt { | |||
| class TestHWTupleOutputToMakeTuple : public BackendCommon { | |||
| public: | |||
| TestHWTupleOutputToMakeTuple() | |||
| : getPyFun_("gtest_input.pre_activate.convert_tuple_output_to_maketuple_test", true) {} | |||
| ~TestHWTupleOutputToMakeTuple() override = default; | |||
| public: | |||
| UT::PyFuncGraphFetcher getPyFun_; | |||
| }; | |||
| TEST_F(TestHWTupleOutputToMakeTuple, test_convert_tuple_output_to_maketuple) { | |||
| FuncGraphPtr g = getPyFun_.CallAndParseRet("test_convert_tuple_output_to_maketuple", "before"); | |||
| ASSERT_TRUE(g != nullptr); | |||
| std::vector<int> shp_x{5, 2, 10}; | |||
| std::vector<int> shp_h{1, 2, 2}; | |||
| std::vector<int> shp_c{1, 2, 2}; | |||
| std::vector<int> shp_w{112, 1, 1}; | |||
| auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x); | |||
| auto h_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_h); | |||
| auto c_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_c); | |||
| auto w_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_w); | |||
| AbstractBasePtrList args_spec_list{x_abstract, h_abstract, c_abstract, w_abstract}; | |||
| auto func_graph = GetKernelGraph(g, args_spec_list); | |||
| ASSERT_TRUE(func_graph != nullptr); | |||
| auto optimizer = std::make_shared<opt::GraphOptimizer>(); | |||
| auto pm = std::make_shared<opt::PassManager>(); | |||
| pm->AddPass(std::make_shared<opt::ConvertTupleOutputToMaketuple>()); | |||
| optimizer->AddPassManager(pm); | |||
| optimizer->Optimize(func_graph); | |||
| FuncGraphPtr g_after = getPyFun_.CallAndParseRet("test_convert_tuple_output_to_maketuple", "after"); | |||
| ASSERT_TRUE(g_after != nullptr); | |||
| EXPECT_TRUE(CheckEqualGraph(func_graph, g_after)); | |||
| } | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,54 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops import Primitive | |||
| import mindspore as ms | |||
| import mindspore.common.dtype as mstype | |||
| from mindspore.common.tensor import Tensor | |||
| import numpy as np | |||
| make_tuple = Primitive('make_tuple') | |||
| tuple_get_item = Primitive("tuple_getitem"); | |||
| LSTM = P.LSTM(input_size=10,hidden_size=2,num_layers=1,has_bias=True,bidirectional=False,dropout=0.0) | |||
| add = P.TensorAdd() | |||
| class FnDict: | |||
| def __init__(self): | |||
| self.fnDict = {} | |||
| def __call__(self, fn): | |||
| self.fnDict[fn.__name__] = fn | |||
| def __getitem__(self, name): | |||
| return self.fnDict[name] | |||
| def test_convert_tuple_output_to_maketuple(tag): | |||
| fns = FnDict() | |||
| @fns | |||
| def before(x, h, c, w): | |||
| res = LSTM(x, h, c, w) | |||
| return res | |||
| @fns | |||
| def after(x, h, c, w): | |||
| res = LSTM(x, h, c, w) | |||
| res = make_tuple( | |||
| make_tuple(tuple_get_item(res, 0), tuple_get_item(res, 1), tuple_get_item(res, 2), tuple_get_item(res, 3), | |||
| tuple_get_item(res, 4))); | |||
| return res | |||
| return fns[tag] | |||
| @@ -49,7 +49,10 @@ def test_insert_memcpy_async_for_getnext(tag): | |||
| label = tuple_getitem(res, 1) | |||
| memcpy_async_data = memcpy_async(data) | |||
| memcpy_async_label = memcpy_async(label) | |||
| tuple = make_tuple(make_tuple(memcpy_async_data, memcpy_async_label)) | |||
| return tuple | |||
| bind_tuple = make_tuple(memcpy_async_data, memcpy_async_label) | |||
| get_item0 = tuple_getitem(bind_tuple, 0) | |||
| get_item1 = tuple_getitem(bind_tuple, 1) | |||
| bind_tuple = make_tuple(make_tuple(get_item0, get_item1)) | |||
| return bind_tuple | |||
| return fns[tag] | |||