| @@ -45,8 +45,8 @@ endif() | |||||
| if (DEBUG_MODE) | if (DEBUG_MODE) | ||||
| set(CMAKE_BUILD_TYPE "Debug") | set(CMAKE_BUILD_TYPE "Debug") | ||||
| else() | |||||
| add_compile_definitions(MEM_REUSE_DEBUG) | add_compile_definitions(MEM_REUSE_DEBUG) | ||||
| else() | |||||
| set(CMAKE_BUILD_TYPE "Release") | set(CMAKE_BUILD_TYPE "Release") | ||||
| endif() | endif() | ||||
| @@ -205,8 +205,8 @@ std::vector<int> GetRuntimePaddingShape(const AnfNodePtr &node, size_t index) { | |||||
| if (tensor == nullptr) { | if (tensor == nullptr) { | ||||
| MS_LOG(EXCEPTION) << " the node[ " << node->DebugString() << "]'s cannot convert "; | MS_LOG(EXCEPTION) << " the node[ " << node->DebugString() << "]'s cannot convert "; | ||||
| } | } | ||||
| shape = tensor->shape(); | |||||
| (void)std::transform(shape.begin(), shape.end(), std::back_inserter(host_shape), IntToSize); | |||||
| auto shape_temp = tensor->shape(); | |||||
| (void)std::transform(shape_temp.begin(), shape_temp.end(), std::back_inserter(host_shape), IntToSize); | |||||
| if (host_shape.empty()) { | if (host_shape.empty()) { | ||||
| host_shape.push_back(1); | host_shape.push_back(1); | ||||
| } | } | ||||
| @@ -18,6 +18,7 @@ | |||||
| #include <set> | #include <set> | ||||
| #include "common/trans.h" | #include "common/trans.h" | ||||
| #include "common/utils.h" | #include "common/utils.h" | ||||
| #include "pre_activate/common/helper.h" | |||||
| #include "utils/utils.h" | #include "utils/utils.h" | ||||
| #include "device/kernel_info.h" | #include "device/kernel_info.h" | ||||
| #include "kernel/oplib/oplib.h" | #include "kernel/oplib/oplib.h" | ||||
| @@ -346,21 +347,6 @@ CNodePtr InsertCastForInput(const FuncGraphPtr &func_graph, const CNodePtr &cnod | |||||
| return new_node; | return new_node; | ||||
| } | } | ||||
| AnfNodePtr CreatTupleGetItemNode(const FuncGraphPtr &func_graph, const AnfNodePtr &node, size_t output_idx) { | |||||
| auto idx = NewValueNode(SizeToInt(output_idx)); | |||||
| MS_EXCEPTION_IF_NULL(idx); | |||||
| auto imm = std::make_shared<Int32Imm>(SizeToInt(output_idx)); | |||||
| auto abstract_scalar = std::make_shared<abstract::AbstractScalar>(imm); | |||||
| idx->set_abstract(abstract_scalar); | |||||
| AnfNodePtr tuple_getitem = func_graph->NewCNode({NewValueNode(prim::kPrimTupleGetItem), node, idx}); | |||||
| MS_EXCEPTION_IF_NULL(tuple_getitem); | |||||
| tuple_getitem->set_scope(node->scope()); | |||||
| std::vector<size_t> origin_shape = AnfAlgo::GetOutputInferShape(node, output_idx); | |||||
| TypeId origin_type = AnfAlgo::GetOutputInferDataType(node, output_idx); | |||||
| AnfAlgo::SetOutputInferTypeAndShape({origin_type}, {origin_shape}, tuple_getitem.get()); | |||||
| return tuple_getitem; | |||||
| } | |||||
| AnfNodePtr CreateMemcpyAsyncOp(const FuncGraphPtr &graph, const AnfNodePtr &node) { | AnfNodePtr CreateMemcpyAsyncOp(const FuncGraphPtr &graph, const AnfNodePtr &node) { | ||||
| MS_EXCEPTION_IF_NULL(graph); | MS_EXCEPTION_IF_NULL(graph); | ||||
| MS_EXCEPTION_IF_NULL(node); | MS_EXCEPTION_IF_NULL(node); | ||||
| @@ -64,8 +64,6 @@ AnfNodePtr InsertTransOpForOutput(const FuncGraphPtr &func_graph, const AnfNodeP | |||||
| CNodePtr InsertCastForInput(const FuncGraphPtr &func_graph, const CNodePtr &cnode); | CNodePtr InsertCastForInput(const FuncGraphPtr &func_graph, const CNodePtr &cnode); | ||||
| AnfNodePtr CreatTupleGetItemNode(const FuncGraphPtr &func_graph, const AnfNodePtr &node, size_t output_idx); | |||||
| AnfNodePtr CreateMemcpyAsyncOp(const FuncGraphPtr &graph, const AnfNodePtr &node); | AnfNodePtr CreateMemcpyAsyncOp(const FuncGraphPtr &graph, const AnfNodePtr &node); | ||||
| } // namespace opt | } // namespace opt | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -17,6 +17,7 @@ | |||||
| #include <vector> | #include <vector> | ||||
| #include <memory> | #include <memory> | ||||
| #include "pre_activate/ascend/ascend_helper.h" | #include "pre_activate/ascend/ascend_helper.h" | ||||
| #include "pre_activate/common/helper.h" | |||||
| #include "session/anf_runtime_algorithm.h" | #include "session/anf_runtime_algorithm.h" | ||||
| namespace mindspore { | namespace mindspore { | ||||
| @@ -18,6 +18,7 @@ | |||||
| #include <string> | #include <string> | ||||
| #include "pre_activate/common/optimizer.h" | #include "pre_activate/common/optimizer.h" | ||||
| #include "pre_activate/pass/convert_const_input_to_attr.h" | #include "pre_activate/pass/convert_const_input_to_attr.h" | ||||
| #include "pre_activate/pass/convert_tuple_output_to_maketuple.h" | |||||
| #include "pre_activate/pass/convert_const_input_to_tensor_input.h" | #include "pre_activate/pass/convert_const_input_to_tensor_input.h" | ||||
| #include "pre_activate/pass/convert_tuple_input_to_dynamic_input.h" | #include "pre_activate/pass/convert_tuple_input_to_dynamic_input.h" | ||||
| #include "utils/context/ms_context.h" | #include "utils/context/ms_context.h" | ||||
| @@ -42,6 +43,7 @@ void BackendCommonOptimization(const std::shared_ptr<session::KernelGraph> &kern | |||||
| common_pm->AddPass(std::make_shared<ConvertConstInputToAttr>()); | common_pm->AddPass(std::make_shared<ConvertConstInputToAttr>()); | ||||
| common_pm->AddPass(std::make_shared<ConvertConstInputToTensorInput>()); | common_pm->AddPass(std::make_shared<ConvertConstInputToTensorInput>()); | ||||
| common_pm->AddPass(std::make_shared<ConvertTupleInputToDynamicInput>()); | common_pm->AddPass(std::make_shared<ConvertTupleInputToDynamicInput>()); | ||||
| common_pm->AddPass(std::make_shared<ConvertTupleOutputToMaketuple>()); | |||||
| optimizer->AddPassManager(common_pm); | optimizer->AddPassManager(common_pm); | ||||
| (void)optimizer->Optimize(kernel_graph); | (void)optimizer->Optimize(kernel_graph); | ||||
| kernel_graph->SetExecOrderByDefault(); | kernel_graph->SetExecOrderByDefault(); | ||||
| @@ -407,5 +407,20 @@ bool IsUsedByOthers(const FuncGraphPtr &graph, const AnfNodePtr &node) { | |||||
| } | } | ||||
| return manager->node_users()[node].size() > 1; | return manager->node_users()[node].size() > 1; | ||||
| } | } | ||||
| AnfNodePtr CreatTupleGetItemNode(const FuncGraphPtr &func_graph, const AnfNodePtr &node, size_t output_idx) { | |||||
| auto idx = NewValueNode(SizeToInt(output_idx)); | |||||
| MS_EXCEPTION_IF_NULL(idx); | |||||
| auto imm = std::make_shared<Int32Imm>(SizeToInt(output_idx)); | |||||
| auto abstract_scalar = std::make_shared<abstract::AbstractScalar>(imm); | |||||
| idx->set_abstract(abstract_scalar); | |||||
| AnfNodePtr tuple_getitem = func_graph->NewCNode({NewValueNode(prim::kPrimTupleGetItem), node, idx}); | |||||
| MS_EXCEPTION_IF_NULL(tuple_getitem); | |||||
| tuple_getitem->set_scope(node->scope()); | |||||
| std::vector<size_t> origin_shape = AnfAlgo::GetOutputInferShape(node, output_idx); | |||||
| TypeId origin_type = AnfAlgo::GetOutputInferDataType(node, output_idx); | |||||
| AnfAlgo::SetOutputInferTypeAndShape({origin_type}, {origin_shape}, tuple_getitem.get()); | |||||
| return tuple_getitem; | |||||
| } | |||||
| } // namespace opt | } // namespace opt | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -146,6 +146,8 @@ void HideNopNode(session::KernelGraph *const graph); | |||||
| void RemoveNopNode(session::KernelGraph *const graph); | void RemoveNopNode(session::KernelGraph *const graph); | ||||
| AnfNodePtr CreatTupleGetItemNode(const FuncGraphPtr &func_graph, const AnfNodePtr &node, size_t output_idx); | |||||
| bool IsUsedByOthers(const FuncGraphPtr &graph, const AnfNodePtr &node); | bool IsUsedByOthers(const FuncGraphPtr &graph, const AnfNodePtr &node); | ||||
| } // namespace opt | } // namespace opt | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -19,6 +19,7 @@ | |||||
| #include <memory> | #include <memory> | ||||
| #include "session/anf_runtime_algorithm.h" | #include "session/anf_runtime_algorithm.h" | ||||
| #include "pre_activate/common/helper.h" | |||||
| #include "session/kernel_graph.h" | #include "session/kernel_graph.h" | ||||
| namespace mindspore { | namespace mindspore { | ||||
| @@ -40,13 +41,7 @@ void ConvertTupleOuputToPlantInputs(const FuncGraphPtr &graph, const AnfNodePtr | |||||
| convert_inputs = kernel_graph->SplitTupleValueNodeToNodeList(value_node); | convert_inputs = kernel_graph->SplitTupleValueNodeToNodeList(value_node); | ||||
| } else { | } else { | ||||
| for (size_t index = 0; index < output_size; ++index) { | for (size_t index = 0; index < output_size; ++index) { | ||||
| auto idx = NewValueNode(SizeToInt(index)); | |||||
| MS_EXCEPTION_IF_NULL(idx); | |||||
| auto imm = std::make_shared<Int32Imm>(SizeToInt(index)); | |||||
| auto abstract_scalar = std::make_shared<abstract::AbstractScalar>(imm); | |||||
| idx->set_abstract(abstract_scalar); | |||||
| auto tuple_get_item = | |||||
| graph->NewCNode(std::vector<AnfNodePtr>{NewValueNode(prim::kPrimTupleGetItem), input_node, idx}); | |||||
| auto tuple_get_item = CreatTupleGetItemNode(graph, input_node, index); | |||||
| AnfAlgo::SetOutputInferTypeAndShape({AnfAlgo::GetOutputInferDataType(input_node, index)}, | AnfAlgo::SetOutputInferTypeAndShape({AnfAlgo::GetOutputInferDataType(input_node, index)}, | ||||
| {AnfAlgo::GetOutputInferShape(input_node, index)}, tuple_get_item.get()); | {AnfAlgo::GetOutputInferShape(input_node, index)}, tuple_get_item.get()); | ||||
| convert_inputs.emplace_back(tuple_get_item); | convert_inputs.emplace_back(tuple_get_item); | ||||
| @@ -0,0 +1,79 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "pre_activate/pass/convert_tuple_output_to_maketuple.h" | |||||
| #include <algorithm> | |||||
| #include <memory> | |||||
| #include "session/anf_runtime_algorithm.h" | |||||
| #include "pre_activate/common/helper.h" | |||||
| #include "session/kernel_graph.h" | |||||
| namespace mindspore { | |||||
| namespace opt { | |||||
| namespace { | |||||
| CNodePtr ConvertTupleInputToMakeTuple(const FuncGraphPtr &graph, const CNodePtr &cnode_ptr) { | |||||
| MS_EXCEPTION_IF_NULL(cnode_ptr); | |||||
| MS_EXCEPTION_IF_NULL(graph); | |||||
| std::vector<AnfNodePtr> convert_inputs = {cnode_ptr->input(0)}; | |||||
| for (size_t index = 0; index < AnfAlgo::GetInputTensorNum(cnode_ptr); ++index) { | |||||
| auto input_node = AnfAlgo::GetInputNode(cnode_ptr, index); | |||||
| if (AnfAlgo::IsTupleOutput(input_node)) { | |||||
| std::vector<TypeId> types; | |||||
| std::vector<std::vector<size_t>> shapes; | |||||
| std::vector<AnfNodePtr> make_tuple_inputs_list = {NewValueNode(prim::kPrimMakeTuple)}; | |||||
| for (size_t tuple_out_index = 0; tuple_out_index < AnfAlgo::GetOutputTensorNum(input_node); ++tuple_out_index) { | |||||
| make_tuple_inputs_list.emplace_back(CreatTupleGetItemNode(graph, input_node, tuple_out_index)); | |||||
| types.push_back(AnfAlgo::GetOutputInferDataType(input_node, tuple_out_index)); | |||||
| shapes.emplace_back(AnfAlgo::GetOutputInferShape(input_node, tuple_out_index)); | |||||
| } | |||||
| auto make_tuple = graph->NewCNode(make_tuple_inputs_list); | |||||
| AnfAlgo::SetOutputInferTypeAndShape(types, shapes, make_tuple.get()); | |||||
| convert_inputs.emplace_back(make_tuple); | |||||
| } else { | |||||
| convert_inputs.push_back(input_node); | |||||
| } | |||||
| } | |||||
| cnode_ptr->set_inputs(convert_inputs); | |||||
| return cnode_ptr; | |||||
| } | |||||
| } // namespace | |||||
| const BaseRef ConvertTupleOutputToMaketuple::DefinePattern() const { | |||||
| VarPtr V = std::make_shared<Var>(); | |||||
| VarPtr Xs = std::make_shared<SeqVar>(); | |||||
| return VectorRef({V, Xs}); | |||||
| } | |||||
| const AnfNodePtr ConvertTupleOutputToMaketuple::Process(const FuncGraphPtr &func_graph, const AnfNodePtr &node, | |||||
| const EquivPtr &) const { | |||||
| if (node == nullptr || !node->isa<CNode>()) { | |||||
| return nullptr; | |||||
| } | |||||
| auto cnode = node->cast<CNodePtr>(); | |||||
| MS_EXCEPTION_IF_NULL(cnode); | |||||
| if (AnfAlgo::GetCNodeName(cnode) == prim::kPrimTupleGetItem->name()) { | |||||
| return nullptr; | |||||
| } | |||||
| if (std::any_of(cnode->inputs().begin() + 1, cnode->inputs().end(), [](const AnfNodePtr &node) { | |||||
| return AnfAlgo::IsTupleOutput(node) && AnfAlgo::GetCNodeName(node) != prim::kPrimMakeTuple->name(); | |||||
| })) { | |||||
| return ConvertTupleInputToMakeTuple(func_graph, cnode); | |||||
| } | |||||
| return nullptr; | |||||
| } | |||||
| } // namespace opt | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,40 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CONVERT_TUPLE_OUTPUT_TO_MAKETUPLE_H | |||||
| #define MINDSPORE_CONVERT_TUPLE_OUTPUT_TO_MAKETUPLE_H | |||||
| #include <string> | |||||
| #include <vector> | |||||
| #include "ir/anf.h" | |||||
| #include "pre_activate/common/optimizer.h" | |||||
| namespace mindspore { | |||||
| namespace opt { | |||||
| class ConvertTupleOutputToMaketuple : public PatternProcessPass { | |||||
| public: | |||||
| explicit ConvertTupleOutputToMaketuple(bool multigraph = true) | |||||
| : PatternProcessPass("convert_tuple_output_to_maketuple", multigraph) {} | |||||
| ~ConvertTupleOutputToMaketuple() override = default; | |||||
| const BaseRef DefinePattern() const override; | |||||
| const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override; | |||||
| }; | |||||
| } // namespace opt | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CONVERT_TUPLE_OUTPUT_TO_MAKETUPLE_H | |||||
| @@ -239,7 +239,7 @@ std::vector<AnfNodePtr> KernelGraph::SplitTupleValueNodeToNodeList(const ValueNo | |||||
| AddValueNodeToGraph(new_value_node); | AddValueNodeToGraph(new_value_node); | ||||
| convert_inputs.emplace_back(new_value_node); | convert_inputs.emplace_back(new_value_node); | ||||
| } | } | ||||
| if (RemoveValueNodeFromGraph(value_node)) { | |||||
| if (!RemoveValueNodeFromGraph(value_node)) { | |||||
| MS_LOG(WARNING) << "failed to remove the value_node " << value_node->DebugString(); | MS_LOG(WARNING) << "failed to remove the value_node " << value_node->DebugString(); | ||||
| } | } | ||||
| return convert_inputs; | return convert_inputs; | ||||
| @@ -0,0 +1,65 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "common/backend_common_test.h" | |||||
| #include "ir/anf.h" | |||||
| #include "ir/meta_tensor.h" | |||||
| #include "debug/anf_ir_dump.h" | |||||
| #include "common/py_func_graph_fetcher.h" | |||||
| #include "session/anf_runtime_algorithm.h" | |||||
| #include "pre_activate/common/optimizer.h" | |||||
| #include "pre_activate/common/pass_manager.h" | |||||
| #include "pre_activate/pass/convert_tuple_output_to_maketuple.h" | |||||
| #include "utils/utils.h" | |||||
| namespace mindspore { | |||||
| namespace opt { | |||||
| class TestHWTupleOutputToMakeTuple : public BackendCommon { | |||||
| public: | |||||
| TestHWTupleOutputToMakeTuple() | |||||
| : getPyFun_("gtest_input.pre_activate.convert_tuple_output_to_maketuple_test", true) {} | |||||
| ~TestHWTupleOutputToMakeTuple() override = default; | |||||
| public: | |||||
| UT::PyFuncGraphFetcher getPyFun_; | |||||
| }; | |||||
| TEST_F(TestHWTupleOutputToMakeTuple, test_convert_tuple_output_to_maketuple) { | |||||
| FuncGraphPtr g = getPyFun_.CallAndParseRet("test_convert_tuple_output_to_maketuple", "before"); | |||||
| ASSERT_TRUE(g != nullptr); | |||||
| std::vector<int> shp_x{5, 2, 10}; | |||||
| std::vector<int> shp_h{1, 2, 2}; | |||||
| std::vector<int> shp_c{1, 2, 2}; | |||||
| std::vector<int> shp_w{112, 1, 1}; | |||||
| auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x); | |||||
| auto h_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_h); | |||||
| auto c_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_c); | |||||
| auto w_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_w); | |||||
| AbstractBasePtrList args_spec_list{x_abstract, h_abstract, c_abstract, w_abstract}; | |||||
| auto func_graph = GetKernelGraph(g, args_spec_list); | |||||
| ASSERT_TRUE(func_graph != nullptr); | |||||
| auto optimizer = std::make_shared<opt::GraphOptimizer>(); | |||||
| auto pm = std::make_shared<opt::PassManager>(); | |||||
| pm->AddPass(std::make_shared<opt::ConvertTupleOutputToMaketuple>()); | |||||
| optimizer->AddPassManager(pm); | |||||
| optimizer->Optimize(func_graph); | |||||
| FuncGraphPtr g_after = getPyFun_.CallAndParseRet("test_convert_tuple_output_to_maketuple", "after"); | |||||
| ASSERT_TRUE(g_after != nullptr); | |||||
| EXPECT_TRUE(CheckEqualGraph(func_graph, g_after)); | |||||
| } | |||||
| } // namespace opt | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,54 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| from mindspore.ops import operations as P | |||||
| from mindspore.ops import Primitive | |||||
| import mindspore as ms | |||||
| import mindspore.common.dtype as mstype | |||||
| from mindspore.common.tensor import Tensor | |||||
| import numpy as np | |||||
| make_tuple = Primitive('make_tuple') | |||||
| tuple_get_item = Primitive("tuple_getitem"); | |||||
| LSTM = P.LSTM(input_size=10,hidden_size=2,num_layers=1,has_bias=True,bidirectional=False,dropout=0.0) | |||||
| add = P.TensorAdd() | |||||
| class FnDict: | |||||
| def __init__(self): | |||||
| self.fnDict = {} | |||||
| def __call__(self, fn): | |||||
| self.fnDict[fn.__name__] = fn | |||||
| def __getitem__(self, name): | |||||
| return self.fnDict[name] | |||||
| def test_convert_tuple_output_to_maketuple(tag): | |||||
| fns = FnDict() | |||||
| @fns | |||||
| def before(x, h, c, w): | |||||
| res = LSTM(x, h, c, w) | |||||
| return res | |||||
| @fns | |||||
| def after(x, h, c, w): | |||||
| res = LSTM(x, h, c, w) | |||||
| res = make_tuple( | |||||
| make_tuple(tuple_get_item(res, 0), tuple_get_item(res, 1), tuple_get_item(res, 2), tuple_get_item(res, 3), | |||||
| tuple_get_item(res, 4))); | |||||
| return res | |||||
| return fns[tag] | |||||
| @@ -49,7 +49,10 @@ def test_insert_memcpy_async_for_getnext(tag): | |||||
| label = tuple_getitem(res, 1) | label = tuple_getitem(res, 1) | ||||
| memcpy_async_data = memcpy_async(data) | memcpy_async_data = memcpy_async(data) | ||||
| memcpy_async_label = memcpy_async(label) | memcpy_async_label = memcpy_async(label) | ||||
| tuple = make_tuple(make_tuple(memcpy_async_data, memcpy_async_label)) | |||||
| return tuple | |||||
| bind_tuple = make_tuple(memcpy_async_data, memcpy_async_label) | |||||
| get_item0 = tuple_getitem(bind_tuple, 0) | |||||
| get_item1 = tuple_getitem(bind_tuple, 1) | |||||
| bind_tuple = make_tuple(make_tuple(get_item0, get_item1)) | |||||
| return bind_tuple | |||||
| return fns[tag] | return fns[tag] | ||||