|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test array ops """
- import functools
- import numpy as np
- import pytest
- from mindspore._c_expression import signature_dtype as sig_dtype
- from mindspore._c_expression import signature_kind as sig_kind
- from mindspore._c_expression import signature_rw as sig_rw
-
- import mindspore as ms
- from mindspore import Tensor
- from mindspore.common import dtype as mstype
- from mindspore.nn import Cell
- from mindspore.ops import operations as P
- from mindspore.ops.operations import _inner_ops as inner
- from mindspore.ops import prim_attr_register
- from mindspore.ops.primitive import PrimitiveWithInfer
- import mindspore.context as context
- from ..ut_filter import non_graph_engine
- from ....mindspore_test_framework.mindspore_test import mindspore_test
- from ....mindspore_test_framework.pipeline.forward.compile_forward \
- import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
- from ....mindspore_test_framework.pipeline.forward.verify_exception \
- import pipeline_for_verify_exception_for_case_by_case_config
-
-
- def test_expand_dims():
- input_tensor = Tensor(np.array([[2, 2], [2, 2]]))
- expand_dims = P.ExpandDims()
- output = expand_dims(input_tensor, 0)
- assert output.asnumpy().shape == (1, 2, 2)
-
-
- def test_cast():
- input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
- input_x = Tensor(input_np)
- td = ms.int32
- cast = P.Cast()
- result = cast(input_x, td)
- expect = input_np.astype(np.int32)
- assert np.all(result.asnumpy() == expect)
-
-
- @non_graph_engine
- def test_reshape():
- input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]))
- shp = (3, 2)
- reshape = P.Reshape()
- output = reshape(input_tensor, shp)
- assert output.asnumpy().shape == (3, 2)
-
-
- def test_transpose():
- input_tensor = Tensor(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]))
- perm = (0, 2, 1)
- expect = np.array([[[1, 4], [2, 5], [3, 6]], [[7, 10], [8, 11], [9, 12]]])
-
- transpose = P.Transpose()
- output = transpose(input_tensor, perm)
- assert np.all(output.asnumpy() == expect)
-
-
- def test_squeeze():
- input_tensor = Tensor(np.ones(shape=[3, 2, 1]))
- squeeze = P.Squeeze(2)
- output = squeeze(input_tensor)
- assert output.asnumpy().shape == (3, 2)
-
-
- def test_invert_permutation():
- invert_permutation = P.InvertPermutation()
- x = (3, 4, 0, 2, 1)
- output = invert_permutation(x)
- expect = (2, 4, 3, 0, 1)
- assert np.all(output == expect)
-
-
- def test_select():
- select = P.Select()
- cond = Tensor(np.array([[True, False, False], [False, True, True]]))
- x = Tensor(np.array([[1, 2, 3], [4, 5, 6]]))
- y = Tensor(np.array([[7, 8, 9], [10, 11, 12]]))
- output = select(cond, x, y)
- expect = np.array([[1, 8, 9], [10, 5, 6]])
- assert np.all(output.asnumpy() == expect)
-
-
- def test_argmin_invalid_output_type():
- P.Argmin(-1, mstype.int64)
- P.Argmin(-1, mstype.int32)
- with pytest.raises(TypeError):
- P.Argmin(-1, mstype.float32)
- with pytest.raises(TypeError):
- P.Argmin(-1, mstype.float64)
- with pytest.raises(TypeError):
- P.Argmin(-1, mstype.uint8)
- with pytest.raises(TypeError):
- P.Argmin(-1, mstype.bool_)
-
-
- class CustomOP(PrimitiveWithInfer):
- __mindspore_signature__ = (sig_dtype.T, sig_dtype.T, sig_dtype.T1,
- sig_dtype.T1, sig_dtype.T2, sig_dtype.T2,
- sig_dtype.T2, sig_dtype.T3, sig_dtype.T4)
-
- @prim_attr_register
- def __init__(self):
- pass
-
- def __call__(self, p1, p2, p3, p4, p5, p6, p7, p8, p9):
- raise NotImplementedError
-
-
- class CustomOP2(PrimitiveWithInfer):
- __mindspore_signature__ = (
- ('p1', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
- ('p2', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
- ('p3', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
- )
-
- @prim_attr_register
- def __init__(self):
- pass
-
- def __call__(self, p1, p2, p3):
- raise NotImplementedError
-
-
- class CustNet1(Cell):
- def __init__(self):
- super(CustNet1, self).__init__()
- self.op = CustomOP()
- self.t1 = Tensor(np.ones([2, 2]), dtype=ms.int32)
- self.t2 = Tensor(np.ones([1, 5]), dtype=ms.float16)
- self.int1 = 3
- self.float1 = 5.1
-
- def construct(self):
- x = self.op(self.t1, self.t1, self.int1,
- self.float1, self.int1, self.float1,
- self.t2, self.t1, self.int1)
- return x
-
-
- class CustNet2(Cell):
- def __init__(self):
- super(CustNet2, self).__init__()
- self.op = CustomOP2()
- self.t1 = Tensor(np.ones([2, 2]), dtype=ms.int32)
- self.t2 = Tensor(np.ones([1, 5]), dtype=ms.float16)
- self.int1 = 3
-
- def construct(self):
- return self.op(self.t1, self.t2, self.int1)
-
-
- class CustNet3(Cell):
- def __init__(self):
- super(CustNet3, self).__init__()
- self.op = P.ReduceSum()
- self.t1 = Tensor(np.ones([2, 2]), dtype=ms.int32)
- self.t2 = Tensor(np.ones([1, 5]), dtype=ms.float16)
- self.t2 = 1
-
- def construct(self):
- return self.op(self.t1, self.t2)
-
-
- class MathBinaryNet1(Cell):
- def __init__(self):
- super(MathBinaryNet1, self).__init__()
- self.add = P.TensorAdd()
- self.mul = P.Mul()
- self.max = P.Maximum()
- self.number = 3
-
- def construct(self, x):
- return self.add(x, self.number) + self.mul(x, self.number) + self.max(x, self.number)
-
-
- class MathBinaryNet2(Cell):
- def __init__(self):
- super(MathBinaryNet2, self).__init__()
- self.less_equal = P.LessEqual()
- self.greater = P.Greater()
- self.logic_or = P.LogicalOr()
- self.logic_and = P.LogicalAnd()
- self.number = 3
- self.flag = True
-
- def construct(self, x):
- ret_less_equal = self.logic_and(self.less_equal(x, self.number), self.flag)
- ret_greater = self.logic_or(self.greater(x, self.number), self.flag)
- return self.logic_or(ret_less_equal, ret_greater)
-
-
- class BatchToSpaceNet(Cell):
- def __init__(self):
- super(BatchToSpaceNet, self).__init__()
- block_size = 2
- crops = [[0, 0], [0, 0]]
- self.batch_to_space = P.BatchToSpace(block_size, crops)
-
- def construct(self, x):
- return self.batch_to_space(x)
-
-
- class SpaceToBatchNet(Cell):
- def __init__(self):
- super(SpaceToBatchNet, self).__init__()
- block_size = 2
- paddings = [[0, 0], [0, 0]]
- self.space_to_batch = P.SpaceToBatch(block_size, paddings)
-
- def construct(self, x):
- return self.space_to_batch(x)
-
-
- class PackNet(Cell):
- def __init__(self):
- super(PackNet, self).__init__()
- self.pack = P.Pack()
-
- def construct(self, x):
- return self.pack((x, x))
-
-
- class UnpackNet(Cell):
- def __init__(self):
- super(UnpackNet, self).__init__()
- self.unpack = P.Unpack()
-
- def construct(self, x):
- return self.unpack(x)
- class SpaceToDepthNet(Cell):
- def __init__(self):
- super(SpaceToDepthNet, self).__init__()
- block_size = 2
- self.space_to_depth = P.SpaceToDepth(block_size)
-
- def construct(self, x):
- return self.space_to_depth(x)
-
-
- class DepthToSpaceNet(Cell):
- def __init__(self):
- super(DepthToSpaceNet, self).__init__()
- block_size = 2
- self.depth_to_space = P.DepthToSpace(block_size)
-
- def construct(self, x):
- return self.depth_to_space(x)
-
-
- class BatchToSpaceNDNet(Cell):
- def __init__(self):
- super(BatchToSpaceNDNet, self).__init__()
- block_shape = [2, 2]
- crops = [[0, 0], [0, 0]]
- self.batch_to_space_nd = P.BatchToSpaceND(block_shape, crops)
-
- def construct(self, x):
- return self.batch_to_space_nd(x)
-
-
- class SpaceToBatchNDNet(Cell):
- def __init__(self):
- super(SpaceToBatchNDNet, self).__init__()
- block_shape = [2, 2]
- paddings = [[0, 0], [0, 0]]
- self.space_to_batch_nd = P.SpaceToBatchND(block_shape, paddings)
-
- def construct(self, x):
- return self.space_to_batch_nd(x)
-
-
- class RangeNet(Cell):
- def __init__(self):
- super(RangeNet, self).__init__()
- self.range_ops = inner.Range(1.0, 8.0, 2.0)
-
- def construct(self, x):
- return self.range_ops(x)
-
-
- test_case_array_ops = [
- ('CustNet1', {
- 'block': CustNet1(),
- 'desc_inputs': []}),
- ('CustNet2', {
- 'block': CustNet2(),
- 'desc_inputs': []}),
- ('CustNet3', {
- 'block': CustNet3(),
- 'desc_inputs': []}),
- ('MathBinaryNet1', {
- 'block': MathBinaryNet1(),
- 'desc_inputs': [Tensor(np.ones([2, 2]), dtype=ms.int32)]}),
- ('MathBinaryNet2', {
- 'block': MathBinaryNet2(),
- 'desc_inputs': [Tensor(np.ones([2, 2]), dtype=ms.int32)]}),
- ('BatchToSpaceNet', {
- 'block': BatchToSpaceNet(),
- 'desc_inputs': [Tensor(np.array([[[[1]]], [[[2]]], [[[3]]], [[[4]]]]).astype(np.float16))]}),
- ('SpaceToBatchNet', {
- 'block': SpaceToBatchNet(),
- 'desc_inputs': [Tensor(np.array([[[[1, 2], [3, 4]]]]).astype(np.float16))]}),
- ('PackNet', {
- 'block': PackNet(),
- 'desc_inputs': [Tensor(np.array([[[1, 2], [3, 4]]]).astype(np.float16))]}),
- ('UnpackNet', {
- 'block': UnpackNet(),
- 'desc_inputs': [Tensor(np.array([[1, 2], [3, 4]]).astype(np.float16))]}),
- ('SpaceToDepthNet', {
- 'block': SpaceToDepthNet(),
- 'desc_inputs': [Tensor(np.random.rand(1, 3, 2, 2).astype(np.float16))]}),
- ('DepthToSpaceNet', {
- 'block': DepthToSpaceNet(),
- 'desc_inputs': [Tensor(np.random.rand(1, 12, 1, 1).astype(np.float16))]}),
- ('SpaceToBatchNDNet', {
- 'block': SpaceToBatchNDNet(),
- 'desc_inputs': [Tensor(np.random.rand(1, 1, 2, 2).astype(np.float16))]}),
- ('BatchToSpaceNDNet', {
- 'block': BatchToSpaceNDNet(),
- 'desc_inputs': [Tensor(np.random.rand(4, 1, 1, 1).astype(np.float16))]}),
- ('RangeNet', {
- 'block': RangeNet(),
- 'desc_inputs': [Tensor(np.array([1, 2, 3, 2]), ms.int32)]}),
- ]
-
- test_case_lists = [test_case_array_ops]
- test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists)
- # use -k to select certain testcast
- # pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
-
-
-
- @non_graph_engine
- @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
- def test_exec():
- context.set_context(mode=context.GRAPH_MODE)
- return test_exec_case
-
-
- raise_set = [
- ('Squeeze_1_Error', {
- 'block': (lambda x: P.Squeeze(axis=1.2), {'exception': TypeError}),
- 'desc_inputs': [Tensor(np.ones(shape=[3, 1, 5]))]}),
- ('Squeeze_2_Error', {
- 'block': (lambda x: P.Squeeze(axis=((1.2, 1.3))), {'exception': TypeError}),
- 'desc_inputs': [Tensor(np.ones(shape=[3, 1, 5]))]}),
- ('ReduceSum_Error', {
- 'block': (lambda x: P.ReduceSum(keep_dims=1), {'exception': TypeError}),
- 'desc_inputs': [Tensor(np.ones(shape=[3, 1, 5]))]}),
- ]
-
-
- @mindspore_test(pipeline_for_verify_exception_for_case_by_case_config)
- def test_check_exception():
- return raise_set
|