|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """SSD dataset"""
- from __future__ import division
-
- import os
- import math
- import itertools as it
- import numpy as np
- import cv2
-
- import mindspore.dataset as de
- import mindspore.dataset.transforms.vision.c_transforms as C
- from mindspore.mindrecord import FileWriter
- from config import ConfigSSD
-
- config = ConfigSSD()
-
- class GeneratDefaultBoxes():
- """
- Generate Default boxes for SSD, follows the order of (W, H, archor_sizes).
- `self.default_boxes` has a shape of [archor_sizes, H, W, 4], the last dimension is [y, x, h, w].
- `self.default_boxes_ltrb` has a shape as `self.default_boxes`, the last dimension is [y1, x1, y2, x2].
- """
- def __init__(self):
- fk = config.IMG_SHAPE[0] / np.array(config.STEPS)
- scale_rate = (config.MAX_SCALE - config.MIN_SCALE) / (len(config.NUM_DEFAULT) - 1)
- scales = [config.MIN_SCALE + scale_rate * i for i in range(len(config.NUM_DEFAULT))] + [1.0]
- self.default_boxes = []
- for idex, feature_size in enumerate(config.FEATURE_SIZE):
- sk1 = scales[idex]
- sk2 = scales[idex + 1]
- sk3 = math.sqrt(sk1 * sk2)
- if idex == 0:
- w, h = sk1 * math.sqrt(2), sk1 / math.sqrt(2)
- all_sizes = [(0.1, 0.1), (w, h), (h, w)]
- else:
- all_sizes = [(sk1, sk1)]
- for aspect_ratio in config.ASPECT_RATIOS[idex]:
- w, h = sk1 * math.sqrt(aspect_ratio), sk1 / math.sqrt(aspect_ratio)
- all_sizes.append((w, h))
- all_sizes.append((h, w))
- all_sizes.append((sk3, sk3))
-
- assert len(all_sizes) == config.NUM_DEFAULT[idex]
-
- for i, j in it.product(range(feature_size), repeat=2):
- for w, h in all_sizes:
- cx, cy = (j + 0.5) / fk[idex], (i + 0.5) / fk[idex]
- self.default_boxes.append([cy, cx, h, w])
-
- def to_ltrb(cy, cx, h, w):
- return cy - h / 2, cx - w / 2, cy + h / 2, cx + w / 2
-
- # For IoU calculation
- self.default_boxes_ltrb = np.array(tuple(to_ltrb(*i) for i in self.default_boxes), dtype='float32')
- self.default_boxes = np.array(self.default_boxes, dtype='float32')
-
-
- default_boxes_ltrb = GeneratDefaultBoxes().default_boxes_ltrb
- default_boxes = GeneratDefaultBoxes().default_boxes
- y1, x1, y2, x2 = np.split(default_boxes_ltrb[:, :4], 4, axis=-1)
- vol_anchors = (x2 - x1) * (y2 - y1)
- matching_threshold = config.MATCH_THRESHOLD
-
-
- def _rand(a=0., b=1.):
- """Generate random."""
- return np.random.rand() * (b - a) + a
-
-
- def ssd_bboxes_encode(boxes):
- """
- Labels anchors with ground truth inputs.
-
- Args:
- boxex: ground truth with shape [N, 5], for each row, it stores [y, x, h, w, cls].
-
- Returns:
- gt_loc: location ground truth with shape [num_anchors, 4].
- gt_label: class ground truth with shape [num_anchors, 1].
- num_matched_boxes: number of positives in an image.
- """
-
- def jaccard_with_anchors(bbox):
- """Compute jaccard score a box and the anchors."""
- # Intersection bbox and volume.
- ymin = np.maximum(y1, bbox[0])
- xmin = np.maximum(x1, bbox[1])
- ymax = np.minimum(y2, bbox[2])
- xmax = np.minimum(x2, bbox[3])
- w = np.maximum(xmax - xmin, 0.)
- h = np.maximum(ymax - ymin, 0.)
-
- # Volumes.
- inter_vol = h * w
- union_vol = vol_anchors + (bbox[2] - bbox[0]) * (bbox[3] - bbox[1]) - inter_vol
- jaccard = inter_vol / union_vol
- return np.squeeze(jaccard)
-
- pre_scores = np.zeros((config.NUM_SSD_BOXES), dtype=np.float32)
- t_boxes = np.zeros((config.NUM_SSD_BOXES, 4), dtype=np.float32)
- t_label = np.zeros((config.NUM_SSD_BOXES), dtype=np.int64)
- for bbox in boxes:
- label = int(bbox[4])
- scores = jaccard_with_anchors(bbox)
- idx = np.argmax(scores)
- scores[idx] = 2.0
- mask = (scores > matching_threshold)
- mask = mask & (scores > pre_scores)
- pre_scores = np.maximum(pre_scores, scores * mask)
- t_label = mask * label + (1 - mask) * t_label
- for i in range(4):
- t_boxes[:, i] = mask * bbox[i] + (1 - mask) * t_boxes[:, i]
-
- index = np.nonzero(t_label)
-
- # Transform to ltrb.
- bboxes = np.zeros((config.NUM_SSD_BOXES, 4), dtype=np.float32)
- bboxes[:, [0, 1]] = (t_boxes[:, [0, 1]] + t_boxes[:, [2, 3]]) / 2
- bboxes[:, [2, 3]] = t_boxes[:, [2, 3]] - t_boxes[:, [0, 1]]
-
- # Encode features.
- bboxes_t = bboxes[index]
- default_boxes_t = default_boxes[index]
- bboxes_t[:, :2] = (bboxes_t[:, :2] - default_boxes_t[:, :2]) / (default_boxes_t[:, 2:] * config.PRIOR_SCALING[0])
- bboxes_t[:, 2:4] = np.log(bboxes_t[:, 2:4] / default_boxes_t[:, 2:4]) / config.PRIOR_SCALING[1]
- bboxes[index] = bboxes_t
-
- num_match = np.array([len(np.nonzero(t_label)[0])], dtype=np.int32)
- return bboxes, t_label.astype(np.int32), num_match
-
- def ssd_bboxes_decode(boxes):
- """Decode predict boxes to [y, x, h, w]"""
- boxes_t = boxes.copy()
- default_boxes_t = default_boxes.copy()
- boxes_t[:, :2] = boxes_t[:, :2] * config.PRIOR_SCALING[0] * default_boxes_t[:, 2:] + default_boxes_t[:, :2]
- boxes_t[:, 2:4] = np.exp(boxes_t[:, 2:4] * config.PRIOR_SCALING[1]) * default_boxes_t[:, 2:4]
-
- bboxes = np.zeros((len(boxes_t), 4), dtype=np.float32)
-
- bboxes[:, [0, 1]] = boxes_t[:, [0, 1]] - boxes_t[:, [2, 3]] / 2
- bboxes[:, [2, 3]] = boxes_t[:, [0, 1]] + boxes_t[:, [2, 3]] / 2
-
- return np.clip(bboxes, 0, 1)
-
-
- def intersect(box_a, box_b):
- """Compute the intersect of two sets of boxes."""
- max_yx = np.minimum(box_a[:, 2:4], box_b[2:4])
- min_yx = np.maximum(box_a[:, :2], box_b[:2])
- inter = np.clip((max_yx - min_yx), a_min=0, a_max=np.inf)
- return inter[:, 0] * inter[:, 1]
-
-
- def jaccard_numpy(box_a, box_b):
- """Compute the jaccard overlap of two sets of boxes."""
- inter = intersect(box_a, box_b)
- area_a = ((box_a[:, 2] - box_a[:, 0]) *
- (box_a[:, 3] - box_a[:, 1]))
- area_b = ((box_b[2] - box_b[0]) *
- (box_b[3] - box_b[1]))
- union = area_a + area_b - inter
- return inter / union
-
-
- def random_sample_crop(image, boxes):
- """Random Crop the image and boxes"""
- height, width, _ = image.shape
- min_iou = np.random.choice([None, 0.1, 0.3, 0.5, 0.7, 0.9])
-
- if min_iou is None:
- return image, boxes
-
- # max trails (50)
- for _ in range(50):
- image_t = image
-
- w = _rand(0.3, 1.0) * width
- h = _rand(0.3, 1.0) * height
-
- # aspect ratio constraint b/t .5 & 2
- if h / w < 0.5 or h / w > 2:
- continue
-
- left = _rand() * (width - w)
- top = _rand() * (height - h)
-
- rect = np.array([int(top), int(left), int(top+h), int(left+w)])
- overlap = jaccard_numpy(boxes, rect)
-
- # dropout some boxes
- drop_mask = overlap > 0
- if not drop_mask.any():
- continue
-
- if overlap[drop_mask].min() < min_iou:
- continue
-
- image_t = image_t[rect[0]:rect[2], rect[1]:rect[3], :]
-
- centers = (boxes[:, :2] + boxes[:, 2:4]) / 2.0
-
- m1 = (rect[0] < centers[:, 0]) * (rect[1] < centers[:, 1])
- m2 = (rect[2] > centers[:, 0]) * (rect[3] > centers[:, 1])
-
- # mask in that both m1 and m2 are true
- mask = m1 * m2 * drop_mask
-
- # have any valid boxes? try again if not
- if not mask.any():
- continue
-
- # take only matching gt boxes
- boxes_t = boxes[mask, :].copy()
-
- boxes_t[:, :2] = np.maximum(boxes_t[:, :2], rect[:2])
- boxes_t[:, :2] -= rect[:2]
- boxes_t[:, 2:4] = np.minimum(boxes_t[:, 2:4], rect[2:4])
- boxes_t[:, 2:4] -= rect[:2]
-
- return image_t, boxes_t
- return image, boxes
-
-
- def preprocess_fn(img_id, image, box, is_training):
- """Preprocess function for dataset."""
- def _infer_data(image, input_shape):
- img_h, img_w, _ = image.shape
- input_h, input_w = input_shape
-
- image = cv2.resize(image, (input_w, input_h))
-
- #When the channels of image is 1
- if len(image.shape) == 2:
- image = np.expand_dims(image, axis=-1)
- image = np.concatenate([image, image, image], axis=-1)
-
- return img_id, image, np.array((img_h, img_w), np.float32)
-
- def _data_aug(image, box, is_training, image_size=(300, 300)):
- """Data augmentation function."""
- ih, iw, _ = image.shape
- w, h = image_size
-
- if not is_training:
- return _infer_data(image, image_size)
-
- # Random crop
- box = box.astype(np.float32)
- image, box = random_sample_crop(image, box)
- ih, iw, _ = image.shape
-
- # Resize image
- image = cv2.resize(image, (w, h))
-
- # Flip image or not
- flip = _rand() < .5
- if flip:
- image = cv2.flip(image, 1, dst=None)
-
- # When the channels of image is 1
- if len(image.shape) == 2:
- image = np.expand_dims(image, axis=-1)
- image = np.concatenate([image, image, image], axis=-1)
-
- box[:, [0, 2]] = box[:, [0, 2]] / ih
- box[:, [1, 3]] = box[:, [1, 3]] / iw
-
- if flip:
- box[:, [1, 3]] = 1 - box[:, [3, 1]]
-
- box, label, num_match = ssd_bboxes_encode(box)
- return image, box, label, num_match
- return _data_aug(image, box, is_training, image_size=config.IMG_SHAPE)
-
-
- def create_coco_label(is_training):
- """Get image path and annotation from COCO."""
- from pycocotools.coco import COCO
-
- coco_root = config.COCO_ROOT
- data_type = config.VAL_DATA_TYPE
- if is_training:
- data_type = config.TRAIN_DATA_TYPE
-
- #Classes need to train or test.
- train_cls = config.COCO_CLASSES
- train_cls_dict = {}
- for i, cls in enumerate(train_cls):
- train_cls_dict[cls] = i
-
- anno_json = os.path.join(coco_root, config.INSTANCES_SET.format(data_type))
-
- coco = COCO(anno_json)
- classs_dict = {}
- cat_ids = coco.loadCats(coco.getCatIds())
- for cat in cat_ids:
- classs_dict[cat["id"]] = cat["name"]
-
- image_ids = coco.getImgIds()
- images = []
- image_path_dict = {}
- image_anno_dict = {}
-
- for img_id in image_ids:
- image_info = coco.loadImgs(img_id)
- file_name = image_info[0]["file_name"]
- anno_ids = coco.getAnnIds(imgIds=img_id, iscrowd=None)
- anno = coco.loadAnns(anno_ids)
- image_path = os.path.join(coco_root, data_type, file_name)
- annos = []
- iscrowd = False
- for label in anno:
- bbox = label["bbox"]
- class_name = classs_dict[label["category_id"]]
- iscrowd = iscrowd or label["iscrowd"]
- if class_name in train_cls:
- x_min, x_max = bbox[0], bbox[0] + bbox[2]
- y_min, y_max = bbox[1], bbox[1] + bbox[3]
- annos.append(list(map(round, [y_min, x_min, y_max, x_max])) + [train_cls_dict[class_name]])
- if not is_training and iscrowd:
- continue
- if len(annos) >= 1:
- images.append(img_id)
- image_path_dict[img_id] = image_path
- image_anno_dict[img_id] = np.array(annos)
-
- return images, image_path_dict, image_anno_dict
-
-
- def anno_parser(annos_str):
- """Parse annotation from string to list."""
- annos = []
- for anno_str in annos_str:
- anno = list(map(int, anno_str.strip().split(',')))
- annos.append(anno)
- return annos
-
-
- def filter_valid_data(image_dir, anno_path):
- """Filter valid image file, which both in image_dir and anno_path."""
- images = []
- image_path_dict = {}
- image_anno_dict = {}
- if not os.path.isdir(image_dir):
- raise RuntimeError("Path given is not valid.")
- if not os.path.isfile(anno_path):
- raise RuntimeError("Annotation file is not valid.")
-
- with open(anno_path, "rb") as f:
- lines = f.readlines()
- for img_id, line in enumerate(lines):
- line_str = line.decode("utf-8").strip()
- line_split = str(line_str).split(' ')
- file_name = line_split[0]
- image_path = os.path.join(image_dir, file_name)
- if os.path.isfile(image_path):
- images.append(img_id)
- image_path_dict[img_id] = image_path
- image_anno_dict[img_id] = anno_parser(line_split[1:])
-
- return images, image_path_dict, image_anno_dict
-
-
- def data_to_mindrecord_byte_image(dataset="coco", is_training=True, prefix="ssd.mindrecord", file_num=8):
- """Create MindRecord file."""
- mindrecord_dir = config.MINDRECORD_DIR
- mindrecord_path = os.path.join(mindrecord_dir, prefix)
- writer = FileWriter(mindrecord_path, file_num)
- if dataset == "coco":
- images, image_path_dict, image_anno_dict = create_coco_label(is_training)
- else:
- images, image_path_dict, image_anno_dict = filter_valid_data(config.IMAGE_DIR, config.ANNO_PATH)
-
- ssd_json = {
- "img_id": {"type": "int32", "shape": [1]},
- "image": {"type": "bytes"},
- "annotation": {"type": "int32", "shape": [-1, 5]},
- }
- writer.add_schema(ssd_json, "ssd_json")
-
- for img_id in images:
- image_path = image_path_dict[img_id]
- with open(image_path, 'rb') as f:
- img = f.read()
- annos = np.array(image_anno_dict[img_id], dtype=np.int32)
- img_id = np.array([img_id], dtype=np.int32)
- row = {"img_id": img_id, "image": img, "annotation": annos}
- writer.write_raw_data([row])
- writer.commit()
-
-
- def create_ssd_dataset(mindrecord_file, batch_size=32, repeat_num=10, device_num=1, rank=0,
- is_training=True, num_parallel_workers=4):
- """Creatr SSD dataset with MindDataset."""
- ds = de.MindDataset(mindrecord_file, columns_list=["img_id", "image", "annotation"], num_shards=device_num,
- shard_id=rank, num_parallel_workers=num_parallel_workers, shuffle=is_training)
- decode = C.Decode()
- ds = ds.map(input_columns=["image"], operations=decode)
- change_swap_op = C.HWC2CHW()
- normalize_op = C.Normalize(mean=[0.485*255, 0.456*255, 0.406*255], std=[0.229*255, 0.224*255, 0.225*255])
- color_adjust_op = C.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4)
- compose_map_func = (lambda img_id, image, annotation: preprocess_fn(img_id, image, annotation, is_training))
- if is_training:
- output_columns = ["image", "box", "label", "num_match"]
- trans = [color_adjust_op, normalize_op, change_swap_op]
- else:
- output_columns = ["img_id", "image", "image_shape"]
- trans = [normalize_op, change_swap_op]
- ds = ds.map(input_columns=["img_id", "image", "annotation"],
- output_columns=output_columns, columns_order=output_columns,
- operations=compose_map_func, python_multiprocessing=is_training,
- num_parallel_workers=num_parallel_workers)
- ds = ds.map(input_columns=["image"], operations=trans, python_multiprocessing=is_training,
- num_parallel_workers=num_parallel_workers)
- ds = ds.batch(batch_size, drop_remainder=True)
- ds = ds.repeat(repeat_num)
- return ds
|