# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """SSD dataset""" from __future__ import division import os import math import itertools as it import numpy as np import cv2 import mindspore.dataset as de import mindspore.dataset.transforms.vision.c_transforms as C from mindspore.mindrecord import FileWriter from config import ConfigSSD config = ConfigSSD() class GeneratDefaultBoxes(): """ Generate Default boxes for SSD, follows the order of (W, H, archor_sizes). `self.default_boxes` has a shape of [archor_sizes, H, W, 4], the last dimension is [y, x, h, w]. `self.default_boxes_ltrb` has a shape as `self.default_boxes`, the last dimension is [y1, x1, y2, x2]. """ def __init__(self): fk = config.IMG_SHAPE[0] / np.array(config.STEPS) scale_rate = (config.MAX_SCALE - config.MIN_SCALE) / (len(config.NUM_DEFAULT) - 1) scales = [config.MIN_SCALE + scale_rate * i for i in range(len(config.NUM_DEFAULT))] + [1.0] self.default_boxes = [] for idex, feature_size in enumerate(config.FEATURE_SIZE): sk1 = scales[idex] sk2 = scales[idex + 1] sk3 = math.sqrt(sk1 * sk2) if idex == 0: w, h = sk1 * math.sqrt(2), sk1 / math.sqrt(2) all_sizes = [(0.1, 0.1), (w, h), (h, w)] else: all_sizes = [(sk1, sk1)] for aspect_ratio in config.ASPECT_RATIOS[idex]: w, h = sk1 * math.sqrt(aspect_ratio), sk1 / math.sqrt(aspect_ratio) all_sizes.append((w, h)) all_sizes.append((h, w)) all_sizes.append((sk3, sk3)) assert len(all_sizes) == config.NUM_DEFAULT[idex] for i, j in it.product(range(feature_size), repeat=2): for w, h in all_sizes: cx, cy = (j + 0.5) / fk[idex], (i + 0.5) / fk[idex] self.default_boxes.append([cy, cx, h, w]) def to_ltrb(cy, cx, h, w): return cy - h / 2, cx - w / 2, cy + h / 2, cx + w / 2 # For IoU calculation self.default_boxes_ltrb = np.array(tuple(to_ltrb(*i) for i in self.default_boxes), dtype='float32') self.default_boxes = np.array(self.default_boxes, dtype='float32') default_boxes_ltrb = GeneratDefaultBoxes().default_boxes_ltrb default_boxes = GeneratDefaultBoxes().default_boxes y1, x1, y2, x2 = np.split(default_boxes_ltrb[:, :4], 4, axis=-1) vol_anchors = (x2 - x1) * (y2 - y1) matching_threshold = config.MATCH_THRESHOLD def _rand(a=0., b=1.): """Generate random.""" return np.random.rand() * (b - a) + a def ssd_bboxes_encode(boxes): """ Labels anchors with ground truth inputs. Args: boxex: ground truth with shape [N, 5], for each row, it stores [y, x, h, w, cls]. Returns: gt_loc: location ground truth with shape [num_anchors, 4]. gt_label: class ground truth with shape [num_anchors, 1]. num_matched_boxes: number of positives in an image. """ def jaccard_with_anchors(bbox): """Compute jaccard score a box and the anchors.""" # Intersection bbox and volume. ymin = np.maximum(y1, bbox[0]) xmin = np.maximum(x1, bbox[1]) ymax = np.minimum(y2, bbox[2]) xmax = np.minimum(x2, bbox[3]) w = np.maximum(xmax - xmin, 0.) h = np.maximum(ymax - ymin, 0.) # Volumes. inter_vol = h * w union_vol = vol_anchors + (bbox[2] - bbox[0]) * (bbox[3] - bbox[1]) - inter_vol jaccard = inter_vol / union_vol return np.squeeze(jaccard) pre_scores = np.zeros((config.NUM_SSD_BOXES), dtype=np.float32) t_boxes = np.zeros((config.NUM_SSD_BOXES, 4), dtype=np.float32) t_label = np.zeros((config.NUM_SSD_BOXES), dtype=np.int64) for bbox in boxes: label = int(bbox[4]) scores = jaccard_with_anchors(bbox) idx = np.argmax(scores) scores[idx] = 2.0 mask = (scores > matching_threshold) mask = mask & (scores > pre_scores) pre_scores = np.maximum(pre_scores, scores * mask) t_label = mask * label + (1 - mask) * t_label for i in range(4): t_boxes[:, i] = mask * bbox[i] + (1 - mask) * t_boxes[:, i] index = np.nonzero(t_label) # Transform to ltrb. bboxes = np.zeros((config.NUM_SSD_BOXES, 4), dtype=np.float32) bboxes[:, [0, 1]] = (t_boxes[:, [0, 1]] + t_boxes[:, [2, 3]]) / 2 bboxes[:, [2, 3]] = t_boxes[:, [2, 3]] - t_boxes[:, [0, 1]] # Encode features. bboxes_t = bboxes[index] default_boxes_t = default_boxes[index] bboxes_t[:, :2] = (bboxes_t[:, :2] - default_boxes_t[:, :2]) / (default_boxes_t[:, 2:] * config.PRIOR_SCALING[0]) bboxes_t[:, 2:4] = np.log(bboxes_t[:, 2:4] / default_boxes_t[:, 2:4]) / config.PRIOR_SCALING[1] bboxes[index] = bboxes_t num_match = np.array([len(np.nonzero(t_label)[0])], dtype=np.int32) return bboxes, t_label.astype(np.int32), num_match def ssd_bboxes_decode(boxes): """Decode predict boxes to [y, x, h, w]""" boxes_t = boxes.copy() default_boxes_t = default_boxes.copy() boxes_t[:, :2] = boxes_t[:, :2] * config.PRIOR_SCALING[0] * default_boxes_t[:, 2:] + default_boxes_t[:, :2] boxes_t[:, 2:4] = np.exp(boxes_t[:, 2:4] * config.PRIOR_SCALING[1]) * default_boxes_t[:, 2:4] bboxes = np.zeros((len(boxes_t), 4), dtype=np.float32) bboxes[:, [0, 1]] = boxes_t[:, [0, 1]] - boxes_t[:, [2, 3]] / 2 bboxes[:, [2, 3]] = boxes_t[:, [0, 1]] + boxes_t[:, [2, 3]] / 2 return np.clip(bboxes, 0, 1) def intersect(box_a, box_b): """Compute the intersect of two sets of boxes.""" max_yx = np.minimum(box_a[:, 2:4], box_b[2:4]) min_yx = np.maximum(box_a[:, :2], box_b[:2]) inter = np.clip((max_yx - min_yx), a_min=0, a_max=np.inf) return inter[:, 0] * inter[:, 1] def jaccard_numpy(box_a, box_b): """Compute the jaccard overlap of two sets of boxes.""" inter = intersect(box_a, box_b) area_a = ((box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1])) area_b = ((box_b[2] - box_b[0]) * (box_b[3] - box_b[1])) union = area_a + area_b - inter return inter / union def random_sample_crop(image, boxes): """Random Crop the image and boxes""" height, width, _ = image.shape min_iou = np.random.choice([None, 0.1, 0.3, 0.5, 0.7, 0.9]) if min_iou is None: return image, boxes # max trails (50) for _ in range(50): image_t = image w = _rand(0.3, 1.0) * width h = _rand(0.3, 1.0) * height # aspect ratio constraint b/t .5 & 2 if h / w < 0.5 or h / w > 2: continue left = _rand() * (width - w) top = _rand() * (height - h) rect = np.array([int(top), int(left), int(top+h), int(left+w)]) overlap = jaccard_numpy(boxes, rect) # dropout some boxes drop_mask = overlap > 0 if not drop_mask.any(): continue if overlap[drop_mask].min() < min_iou: continue image_t = image_t[rect[0]:rect[2], rect[1]:rect[3], :] centers = (boxes[:, :2] + boxes[:, 2:4]) / 2.0 m1 = (rect[0] < centers[:, 0]) * (rect[1] < centers[:, 1]) m2 = (rect[2] > centers[:, 0]) * (rect[3] > centers[:, 1]) # mask in that both m1 and m2 are true mask = m1 * m2 * drop_mask # have any valid boxes? try again if not if not mask.any(): continue # take only matching gt boxes boxes_t = boxes[mask, :].copy() boxes_t[:, :2] = np.maximum(boxes_t[:, :2], rect[:2]) boxes_t[:, :2] -= rect[:2] boxes_t[:, 2:4] = np.minimum(boxes_t[:, 2:4], rect[2:4]) boxes_t[:, 2:4] -= rect[:2] return image_t, boxes_t return image, boxes def preprocess_fn(img_id, image, box, is_training): """Preprocess function for dataset.""" def _infer_data(image, input_shape): img_h, img_w, _ = image.shape input_h, input_w = input_shape image = cv2.resize(image, (input_w, input_h)) #When the channels of image is 1 if len(image.shape) == 2: image = np.expand_dims(image, axis=-1) image = np.concatenate([image, image, image], axis=-1) return img_id, image, np.array((img_h, img_w), np.float32) def _data_aug(image, box, is_training, image_size=(300, 300)): """Data augmentation function.""" ih, iw, _ = image.shape w, h = image_size if not is_training: return _infer_data(image, image_size) # Random crop box = box.astype(np.float32) image, box = random_sample_crop(image, box) ih, iw, _ = image.shape # Resize image image = cv2.resize(image, (w, h)) # Flip image or not flip = _rand() < .5 if flip: image = cv2.flip(image, 1, dst=None) # When the channels of image is 1 if len(image.shape) == 2: image = np.expand_dims(image, axis=-1) image = np.concatenate([image, image, image], axis=-1) box[:, [0, 2]] = box[:, [0, 2]] / ih box[:, [1, 3]] = box[:, [1, 3]] / iw if flip: box[:, [1, 3]] = 1 - box[:, [3, 1]] box, label, num_match = ssd_bboxes_encode(box) return image, box, label, num_match return _data_aug(image, box, is_training, image_size=config.IMG_SHAPE) def create_coco_label(is_training): """Get image path and annotation from COCO.""" from pycocotools.coco import COCO coco_root = config.COCO_ROOT data_type = config.VAL_DATA_TYPE if is_training: data_type = config.TRAIN_DATA_TYPE #Classes need to train or test. train_cls = config.COCO_CLASSES train_cls_dict = {} for i, cls in enumerate(train_cls): train_cls_dict[cls] = i anno_json = os.path.join(coco_root, config.INSTANCES_SET.format(data_type)) coco = COCO(anno_json) classs_dict = {} cat_ids = coco.loadCats(coco.getCatIds()) for cat in cat_ids: classs_dict[cat["id"]] = cat["name"] image_ids = coco.getImgIds() images = [] image_path_dict = {} image_anno_dict = {} for img_id in image_ids: image_info = coco.loadImgs(img_id) file_name = image_info[0]["file_name"] anno_ids = coco.getAnnIds(imgIds=img_id, iscrowd=None) anno = coco.loadAnns(anno_ids) image_path = os.path.join(coco_root, data_type, file_name) annos = [] iscrowd = False for label in anno: bbox = label["bbox"] class_name = classs_dict[label["category_id"]] iscrowd = iscrowd or label["iscrowd"] if class_name in train_cls: x_min, x_max = bbox[0], bbox[0] + bbox[2] y_min, y_max = bbox[1], bbox[1] + bbox[3] annos.append(list(map(round, [y_min, x_min, y_max, x_max])) + [train_cls_dict[class_name]]) if not is_training and iscrowd: continue if len(annos) >= 1: images.append(img_id) image_path_dict[img_id] = image_path image_anno_dict[img_id] = np.array(annos) return images, image_path_dict, image_anno_dict def anno_parser(annos_str): """Parse annotation from string to list.""" annos = [] for anno_str in annos_str: anno = list(map(int, anno_str.strip().split(','))) annos.append(anno) return annos def filter_valid_data(image_dir, anno_path): """Filter valid image file, which both in image_dir and anno_path.""" images = [] image_path_dict = {} image_anno_dict = {} if not os.path.isdir(image_dir): raise RuntimeError("Path given is not valid.") if not os.path.isfile(anno_path): raise RuntimeError("Annotation file is not valid.") with open(anno_path, "rb") as f: lines = f.readlines() for img_id, line in enumerate(lines): line_str = line.decode("utf-8").strip() line_split = str(line_str).split(' ') file_name = line_split[0] image_path = os.path.join(image_dir, file_name) if os.path.isfile(image_path): images.append(img_id) image_path_dict[img_id] = image_path image_anno_dict[img_id] = anno_parser(line_split[1:]) return images, image_path_dict, image_anno_dict def data_to_mindrecord_byte_image(dataset="coco", is_training=True, prefix="ssd.mindrecord", file_num=8): """Create MindRecord file.""" mindrecord_dir = config.MINDRECORD_DIR mindrecord_path = os.path.join(mindrecord_dir, prefix) writer = FileWriter(mindrecord_path, file_num) if dataset == "coco": images, image_path_dict, image_anno_dict = create_coco_label(is_training) else: images, image_path_dict, image_anno_dict = filter_valid_data(config.IMAGE_DIR, config.ANNO_PATH) ssd_json = { "img_id": {"type": "int32", "shape": [1]}, "image": {"type": "bytes"}, "annotation": {"type": "int32", "shape": [-1, 5]}, } writer.add_schema(ssd_json, "ssd_json") for img_id in images: image_path = image_path_dict[img_id] with open(image_path, 'rb') as f: img = f.read() annos = np.array(image_anno_dict[img_id], dtype=np.int32) img_id = np.array([img_id], dtype=np.int32) row = {"img_id": img_id, "image": img, "annotation": annos} writer.write_raw_data([row]) writer.commit() def create_ssd_dataset(mindrecord_file, batch_size=32, repeat_num=10, device_num=1, rank=0, is_training=True, num_parallel_workers=4): """Creatr SSD dataset with MindDataset.""" ds = de.MindDataset(mindrecord_file, columns_list=["img_id", "image", "annotation"], num_shards=device_num, shard_id=rank, num_parallel_workers=num_parallel_workers, shuffle=is_training) decode = C.Decode() ds = ds.map(input_columns=["image"], operations=decode) change_swap_op = C.HWC2CHW() normalize_op = C.Normalize(mean=[0.485*255, 0.456*255, 0.406*255], std=[0.229*255, 0.224*255, 0.225*255]) color_adjust_op = C.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4) compose_map_func = (lambda img_id, image, annotation: preprocess_fn(img_id, image, annotation, is_training)) if is_training: output_columns = ["image", "box", "label", "num_match"] trans = [color_adjust_op, normalize_op, change_swap_op] else: output_columns = ["img_id", "image", "image_shape"] trans = [normalize_op, change_swap_op] ds = ds.map(input_columns=["img_id", "image", "annotation"], output_columns=output_columns, columns_order=output_columns, operations=compose_map_func, python_multiprocessing=is_training, num_parallel_workers=num_parallel_workers) ds = ds.map(input_columns=["image"], operations=trans, python_multiprocessing=is_training, num_parallel_workers=num_parallel_workers) ds = ds.batch(batch_size, drop_remainder=True) ds = ds.repeat(repeat_num) return ds