You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_array_ops.py 12 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ test array ops """
  16. import functools
  17. import numpy as np
  18. import pytest
  19. from mindspore._c_expression import signature_dtype as sig_dtype
  20. from mindspore._c_expression import signature_kind as sig_kind
  21. from mindspore._c_expression import signature_rw as sig_rw
  22. import mindspore as ms
  23. from mindspore import Tensor
  24. from mindspore.common import dtype as mstype
  25. from mindspore.nn import Cell
  26. from mindspore.ops import operations as P
  27. from mindspore.ops import prim_attr_register
  28. from mindspore.ops.primitive import PrimitiveWithInfer
  29. import mindspore.context as context
  30. from ..ut_filter import non_graph_engine
  31. from ....mindspore_test_framework.mindspore_test import mindspore_test
  32. from ....mindspore_test_framework.pipeline.forward.compile_forward \
  33. import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
  34. from ....mindspore_test_framework.pipeline.forward.verify_exception \
  35. import pipeline_for_verify_exception_for_case_by_case_config
  36. def test_expand_dims():
  37. input_tensor = Tensor(np.array([[2, 2], [2, 2]]))
  38. expand_dims = P.ExpandDims()
  39. output = expand_dims(input_tensor, 0)
  40. assert output.asnumpy().shape == (1, 2, 2)
  41. def test_cast():
  42. input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
  43. input_x = Tensor(input_np)
  44. td = ms.int32
  45. cast = P.Cast()
  46. result = cast(input_x, td)
  47. expect = input_np.astype(np.int32)
  48. assert np.all(result.asnumpy() == expect)
  49. @non_graph_engine
  50. def test_reshape():
  51. input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]))
  52. shp = (3, 2)
  53. reshape = P.Reshape()
  54. output = reshape(input_tensor, shp)
  55. assert output.asnumpy().shape == (3, 2)
  56. def test_transpose():
  57. input_tensor = Tensor(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]))
  58. perm = (0, 2, 1)
  59. expect = np.array([[[1, 4], [2, 5], [3, 6]], [[7, 10], [8, 11], [9, 12]]])
  60. transpose = P.Transpose()
  61. output = transpose(input_tensor, perm)
  62. assert np.all(output.asnumpy() == expect)
  63. def test_squeeze():
  64. input_tensor = Tensor(np.ones(shape=[3, 2, 1]))
  65. squeeze = P.Squeeze(2)
  66. output = squeeze(input_tensor)
  67. assert output.asnumpy().shape == (3, 2)
  68. def test_invert_permutation():
  69. invert_permutation = P.InvertPermutation()
  70. x = (3, 4, 0, 2, 1)
  71. output = invert_permutation(x)
  72. expect = (2, 4, 3, 0, 1)
  73. assert np.all(output == expect)
  74. def test_select():
  75. select = P.Select()
  76. cond = Tensor(np.array([[True, False, False], [False, True, True]]))
  77. x = Tensor(np.array([[1, 2, 3], [4, 5, 6]]))
  78. y = Tensor(np.array([[7, 8, 9], [10, 11, 12]]))
  79. output = select(cond, x, y)
  80. expect = np.array([[1, 8, 9], [10, 5, 6]])
  81. assert np.all(output.asnumpy() == expect)
  82. def test_argmin_invalid_output_type():
  83. P.Argmin(-1, mstype.int64)
  84. P.Argmin(-1, mstype.int32)
  85. with pytest.raises(TypeError):
  86. P.Argmin(-1, mstype.float32)
  87. with pytest.raises(TypeError):
  88. P.Argmin(-1, mstype.float64)
  89. with pytest.raises(TypeError):
  90. P.Argmin(-1, mstype.uint8)
  91. with pytest.raises(TypeError):
  92. P.Argmin(-1, mstype.bool_)
  93. class CustomOP(PrimitiveWithInfer):
  94. __mindspore_signature__ = (sig_dtype.T, sig_dtype.T, sig_dtype.T1,
  95. sig_dtype.T1, sig_dtype.T2, sig_dtype.T2,
  96. sig_dtype.T2, sig_dtype.T3, sig_dtype.T4)
  97. @prim_attr_register
  98. def __init__(self):
  99. pass
  100. def __call__(self, p1, p2, p3, p4, p5, p6, p7, p8, p9):
  101. raise NotImplementedError
  102. class CustomOP2(PrimitiveWithInfer):
  103. __mindspore_signature__ = (
  104. ('p1', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
  105. ('p2', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
  106. ('p3', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
  107. )
  108. @prim_attr_register
  109. def __init__(self):
  110. pass
  111. def __call__(self, p1, p2, p3):
  112. raise NotImplementedError
  113. class CustNet1(Cell):
  114. def __init__(self):
  115. super(CustNet1, self).__init__()
  116. self.op = CustomOP()
  117. self.t1 = Tensor(np.ones([2, 2]), dtype=ms.int32)
  118. self.t2 = Tensor(np.ones([1, 5]), dtype=ms.float16)
  119. self.int1 = 3
  120. self.float1 = 5.1
  121. def construct(self):
  122. x = self.op(self.t1, self.t1, self.int1,
  123. self.float1, self.int1, self.float1,
  124. self.t2, self.t1, self.int1)
  125. return x
  126. class CustNet2(Cell):
  127. def __init__(self):
  128. super(CustNet2, self).__init__()
  129. self.op = CustomOP2()
  130. self.t1 = Tensor(np.ones([2, 2]), dtype=ms.int32)
  131. self.t2 = Tensor(np.ones([1, 5]), dtype=ms.float16)
  132. self.int1 = 3
  133. def construct(self):
  134. return self.op(self.t1, self.t2, self.int1)
  135. class CustNet3(Cell):
  136. def __init__(self):
  137. super(CustNet3, self).__init__()
  138. self.op = P.ReduceSum()
  139. self.t1 = Tensor(np.ones([2, 2]), dtype=ms.int32)
  140. self.t2 = Tensor(np.ones([1, 5]), dtype=ms.float16)
  141. self.t2 = 1
  142. def construct(self):
  143. return self.op(self.t1, self.t2)
  144. class MathBinaryNet1(Cell):
  145. def __init__(self):
  146. super(MathBinaryNet1, self).__init__()
  147. self.add = P.TensorAdd()
  148. self.mul = P.Mul()
  149. self.max = P.Maximum()
  150. self.number = 3
  151. def construct(self, x):
  152. return self.add(x, self.number) + self.mul(x, self.number) + self.max(x, self.number)
  153. class MathBinaryNet2(Cell):
  154. def __init__(self):
  155. super(MathBinaryNet2, self).__init__()
  156. self.less_equal = P.LessEqual()
  157. self.greater = P.Greater()
  158. self.logic_or = P.LogicalOr()
  159. self.logic_and = P.LogicalAnd()
  160. self.number = 3
  161. self.flag = True
  162. def construct(self, x):
  163. ret_less_equal = self.logic_and(self.less_equal(x, self.number), self.flag)
  164. ret_greater = self.logic_or(self.greater(x, self.number), self.flag)
  165. return self.logic_or(ret_less_equal, ret_greater)
  166. class BatchToSpaceNet(Cell):
  167. def __init__(self):
  168. super(BatchToSpaceNet, self).__init__()
  169. block_size = 2
  170. crops = [[0, 0], [0, 0]]
  171. self.batch_to_space = P.BatchToSpace(block_size, crops)
  172. def construct(self, x):
  173. return self.batch_to_space(x)
  174. class SpaceToBatchNet(Cell):
  175. def __init__(self):
  176. super(SpaceToBatchNet, self).__init__()
  177. block_size = 2
  178. paddings = [[0, 0], [0, 0]]
  179. self.space_to_batch = P.SpaceToBatch(block_size, paddings)
  180. def construct(self, x):
  181. return self.space_to_batch(x)
  182. class PackNet(Cell):
  183. def __init__(self):
  184. super(PackNet, self).__init__()
  185. self.pack = P.Pack()
  186. def construct(self, x):
  187. return self.pack((x, x))
  188. class UnpackNet(Cell):
  189. def __init__(self):
  190. super(UnpackNet, self).__init__()
  191. self.unpack = P.Unpack()
  192. def construct(self, x):
  193. return self.unpack(x)
  194. class SpaceToDepthNet(Cell):
  195. def __init__(self):
  196. super(SpaceToDepthNet, self).__init__()
  197. block_size = 2
  198. self.space_to_depth = P.SpaceToDepth(block_size)
  199. def construct(self, x):
  200. return self.space_to_depth(x)
  201. class DepthToSpaceNet(Cell):
  202. def __init__(self):
  203. super(DepthToSpaceNet, self).__init__()
  204. block_size = 2
  205. self.depth_to_space = P.DepthToSpace(block_size)
  206. def construct(self, x):
  207. return self.depth_to_space(x)
  208. class BatchToSpaceNDNet(Cell):
  209. def __init__(self):
  210. super(BatchToSpaceNDNet, self).__init__()
  211. block_shape = [2, 2]
  212. crops = [[0, 0], [0, 0]]
  213. self.batch_to_space_nd = P.BatchToSpaceND(block_shape, crops)
  214. def construct(self, x):
  215. return self.batch_to_space_nd(x)
  216. class SpaceToBatchNDNet(Cell):
  217. def __init__(self):
  218. super(SpaceToBatchNDNet, self).__init__()
  219. block_shape = [2, 2]
  220. paddings = [[0, 0], [0, 0]]
  221. self.space_to_batch_nd = P.SpaceToBatchND(block_shape, paddings)
  222. def construct(self, x):
  223. return self.space_to_batch_nd(x)
  224. test_case_array_ops = [
  225. ('CustNet1', {
  226. 'block': CustNet1(),
  227. 'desc_inputs': []}),
  228. ('CustNet2', {
  229. 'block': CustNet2(),
  230. 'desc_inputs': []}),
  231. ('CustNet3', {
  232. 'block': CustNet3(),
  233. 'desc_inputs': []}),
  234. ('MathBinaryNet1', {
  235. 'block': MathBinaryNet1(),
  236. 'desc_inputs': [Tensor(np.ones([2, 2]), dtype=ms.int32)]}),
  237. ('MathBinaryNet2', {
  238. 'block': MathBinaryNet2(),
  239. 'desc_inputs': [Tensor(np.ones([2, 2]), dtype=ms.int32)]}),
  240. ('BatchToSpaceNet', {
  241. 'block': BatchToSpaceNet(),
  242. 'desc_inputs': [Tensor(np.array([[[[1]]], [[[2]]], [[[3]]], [[[4]]]]).astype(np.float16))]}),
  243. ('SpaceToBatchNet', {
  244. 'block': SpaceToBatchNet(),
  245. 'desc_inputs': [Tensor(np.array([[[[1, 2], [3, 4]]]]).astype(np.float16))]}),
  246. ('PackNet', {
  247. 'block': PackNet(),
  248. 'desc_inputs': [Tensor(np.array([[[1, 2], [3, 4]]]).astype(np.float16))]}),
  249. ('UnpackNet', {
  250. 'block': UnpackNet(),
  251. 'desc_inputs': [Tensor(np.array([[1, 2], [3, 4]]).astype(np.float16))]}),
  252. ('SpaceToDepthNet', {
  253. 'block': SpaceToDepthNet(),
  254. 'desc_inputs': [Tensor(np.random.rand(1, 3, 2, 2).astype(np.float16))]}),
  255. ('DepthToSpaceNet', {
  256. 'block': DepthToSpaceNet(),
  257. 'desc_inputs': [Tensor(np.random.rand(1, 12, 1, 1).astype(np.float16))]}),
  258. ('SpaceToBatchNDNet', {
  259. 'block': SpaceToBatchNDNet(),
  260. 'desc_inputs': [Tensor(np.random.rand(1, 1, 2, 2).astype(np.float16))]}),
  261. ('BatchToSpaceNDNet', {
  262. 'block': BatchToSpaceNDNet(),
  263. 'desc_inputs': [Tensor(np.random.rand(4, 1, 1, 1).astype(np.float16))]}),
  264. ]
  265. test_case_lists = [test_case_array_ops]
  266. test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists)
  267. # use -k to select certain testcast
  268. # pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
  269. @non_graph_engine
  270. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
  271. def test_exec():
  272. context.set_context(mode=context.GRAPH_MODE)
  273. return test_exec_case
  274. raise_set = [
  275. ('Squeeze_1_Error', {
  276. 'block': (lambda x: P.Squeeze(axis=1.2), {'exception': TypeError}),
  277. 'desc_inputs': [Tensor(np.ones(shape=[3, 1, 5]))]}),
  278. ('Squeeze_2_Error', {
  279. 'block': (lambda x: P.Squeeze(axis=((1.2, 1.3))), {'exception': TypeError}),
  280. 'desc_inputs': [Tensor(np.ones(shape=[3, 1, 5]))]}),
  281. ('ReduceSum_Error', {
  282. 'block': (lambda x: P.ReduceSum(keep_dims=1), {'exception': TypeError}),
  283. 'desc_inputs': [Tensor(np.ones(shape=[3, 1, 5]))]}),
  284. ]
  285. @mindspore_test(pipeline_for_verify_exception_for_case_by_case_config)
  286. def test_check_exception():
  287. return raise_set