|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import pytest
- import numpy as np
- from mindspore import Tensor
- from mindspore.ops import operations as P
- import mindspore.nn as nn
- import mindspore.context as context
- from mindspore.common import dtype as mstype
-
- context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
-
- class Concat_Axis0(nn.Cell):
- def __init__(self):
- super(Concat_Axis0, self).__init__()
- self.cat = P.Concat(axis=0)
-
- def construct(self, x1, x2):
- return self.cat((x1, x2))
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_in2_axis0():
- x1 = Tensor(np.arange(2 * 2 * 2).reshape(2, 2, 2), mstype.float32)
- x2 = Tensor(np.arange(3 * 2 * 2).reshape(3, 2, 2), mstype.float32)
- cat = Concat_Axis0()
- output_ms = cat(x1, x2)
- print("output:\n", output_ms)
- output_np = np.concatenate((x1.asnumpy(), x2.asnumpy()), axis=0)
-
- error = np.ones(shape=output_np.shape) * 10e-6
- diff = output_ms.asnumpy() - output_np
- assert np.all(diff < error)
- assert np.all(-diff < error)
-
- class Concat_Axis1(nn.Cell):
- def __init__(self):
- super(Concat_Axis1, self).__init__()
- self.cat = P.Concat(axis=1)
-
- def construct(self, x1, x2):
- return self.cat((x1, x2))
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_in2_axis1():
- x1 = Tensor(np.arange(2 * 2 * 2).reshape(2, 2, 2), mstype.float32)
- x2 = Tensor(np.arange(2 * 3 * 2).reshape(2, 3, 2), mstype.float32)
- cat = Concat_Axis1()
- output_ms = cat(x1, x2)
- print("output:\n", output_ms)
- output_np = np.concatenate((x1.asnumpy(), x2.asnumpy()), axis=1)
-
- error = np.ones(shape=output_np.shape) * 10e-6
- diff = output_ms.asnumpy() - output_np
- assert np.all(diff < error)
- assert np.all(-diff < error)
-
- class Concat_in3_Axis2(nn.Cell):
- def __init__(self):
- super(Concat_in3_Axis2, self).__init__()
- self.cat = P.Concat(axis=-1)
-
- def construct(self, x1, x2, x3):
- return self.cat((x1, x2, x3))
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_in3_axis2():
- x1 = Tensor(np.arange(2 * 2 * 1).reshape(2, 2, 1), mstype.float32)
- x2 = Tensor(np.arange(2 * 2 * 2).reshape(2, 2, 2), mstype.float32)
- x3 = Tensor(np.arange(2 * 2 * 3).reshape(2, 2, 3), mstype.float32)
- cat = Concat_in3_Axis2()
- output_ms = cat(x1, x2, x3)
- print("output:\n", output_ms)
- output_np = np.concatenate((x1.asnumpy(), x2.asnumpy(), x3.asnumpy()), axis=-1)
-
- error = np.ones(shape=output_np.shape) * 10e-6
- diff = output_ms.asnumpy() - output_np
- assert np.all(diff < error)
- assert np.all(-diff < error)
-
- if __name__ == '__main__':
- test_in2_axis0()
- test_in2_axis1()
- test_in3_axis2()
|