|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # less required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """train SSD and get checkpoint files."""
-
- import os
- import math
- import argparse
- import numpy as np
- import mindspore.nn as nn
- from mindspore import context, Tensor
- from mindspore.communication.management import init
- from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMonitor, TimeMonitor
- from mindspore.train import Model, ParallelMode
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.common.initializer import initializer
-
- from mindspore.model_zoo.ssd import SSD300, SSDWithLossCell, TrainingWrapper, ssd_mobilenet_v2
- from config import ConfigSSD
- from dataset import create_ssd_dataset, data_to_mindrecord_byte_image
-
-
- def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch):
- """
- generate learning rate array
-
- Args:
- global_step(int): total steps of the training
- lr_init(float): init learning rate
- lr_end(float): end learning rate
- lr_max(float): max learning rate
- warmup_epochs(int): number of warmup epochs
- total_epochs(int): total epoch of training
- steps_per_epoch(int): steps of one epoch
-
- Returns:
- np.array, learning rate array
- """
- lr_each_step = []
- total_steps = steps_per_epoch * total_epochs
- warmup_steps = steps_per_epoch * warmup_epochs
- for i in range(total_steps):
- if i < warmup_steps:
- lr = lr_init + (lr_max - lr_init) * i / warmup_steps
- else:
- lr = lr_end + (lr_max - lr_end) * \
- (1. + math.cos(math.pi * (i - warmup_steps) / (total_steps - warmup_steps))) / 2.
- if lr < 0.0:
- lr = 0.0
- lr_each_step.append(lr)
-
- current_step = global_step
- lr_each_step = np.array(lr_each_step).astype(np.float32)
- learning_rate = lr_each_step[current_step:]
-
- return learning_rate
-
-
- def init_net_param(network, initialize_mode='XavierUniform'):
- """Init the parameters in net."""
- params = network.trainable_params()
- for p in params:
- if isinstance(p.data, Tensor) and 'beta' not in p.name and 'gamma' not in p.name and 'bias' not in p.name:
- p.set_parameter_data(initializer(initialize_mode, p.data.shape(), p.data.dtype()))
-
- def main():
- parser = argparse.ArgumentParser(description="SSD training")
- parser.add_argument("--only_create_dataset", type=bool, default=False, help="If set it true, only create "
- "Mindrecord, default is false.")
- parser.add_argument("--distribute", type=bool, default=False, help="Run distribute, default is false.")
- parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
- parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
- parser.add_argument("--lr", type=float, default=0.25, help="Learning rate, default is 0.25.")
- parser.add_argument("--mode", type=str, default="sink", help="Run sink mode or not, default is sink.")
- parser.add_argument("--dataset", type=str, default="coco", help="Dataset, defalut is coco.")
- parser.add_argument("--epoch_size", type=int, default=70, help="Epoch size, default is 70.")
- parser.add_argument("--batch_size", type=int, default=32, help="Batch size, default is 32.")
- parser.add_argument("--pre_trained", type=str, default=None, help="Pretrained Checkpoint file path.")
- parser.add_argument("--save_checkpoint_epochs", type=int, default=5, help="Save checkpoint epochs, default is 5.")
- parser.add_argument("--loss_scale", type=int, default=1024, help="Loss scale, default is 1024.")
- args_opt = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
-
- if args_opt.distribute:
- device_num = args_opt.device_num
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True,
- device_num=device_num)
- init()
- rank = args_opt.device_id % device_num
- else:
- rank = 0
- device_num = 1
-
- print("Start create dataset!")
-
- # It will generate mindrecord file in args_opt.mindrecord_dir,
- # and the file name is ssd.mindrecord0, 1, ... file_num.
-
- config = ConfigSSD()
- prefix = "ssd.mindrecord"
- mindrecord_dir = config.MINDRECORD_DIR
- mindrecord_file = os.path.join(mindrecord_dir, prefix + "0")
- if not os.path.exists(mindrecord_file):
- if not os.path.isdir(mindrecord_dir):
- os.makedirs(mindrecord_dir)
- if args_opt.dataset == "coco":
- if os.path.isdir(config.COCO_ROOT):
- print("Create Mindrecord.")
- data_to_mindrecord_byte_image("coco", True, prefix)
- print("Create Mindrecord Done, at {}".format(mindrecord_dir))
- else:
- print("COCO_ROOT not exits.")
- else:
- if os.path.isdir(config.IMAGE_DIR) and os.path.exists(config.ANNO_PATH):
- print("Create Mindrecord.")
- data_to_mindrecord_byte_image("other", True, prefix)
- print("Create Mindrecord Done, at {}".format(mindrecord_dir))
- else:
- print("IMAGE_DIR or ANNO_PATH not exits.")
-
- if not args_opt.only_create_dataset:
- loss_scale = float(args_opt.loss_scale)
-
- # When create MindDataset, using the fitst mindrecord file, such as ssd.mindrecord0.
- dataset = create_ssd_dataset(mindrecord_file, repeat_num=args_opt.epoch_size,
- batch_size=args_opt.batch_size, device_num=device_num, rank=rank)
-
- dataset_size = dataset.get_dataset_size()
- print("Create dataset done!")
-
- ssd = SSD300(backbone=ssd_mobilenet_v2(), config=config)
- net = SSDWithLossCell(ssd, config)
- init_net_param(net)
-
- # checkpoint
- ckpt_config = CheckpointConfig(save_checkpoint_steps=dataset_size * args_opt.save_checkpoint_epochs)
- ckpoint_cb = ModelCheckpoint(prefix="ssd", directory=None, config=ckpt_config)
-
- lr = Tensor(get_lr(global_step=0, lr_init=0, lr_end=0, lr_max=args_opt.lr,
- warmup_epochs=max(args_opt.epoch_size // 20, 1),
- total_epochs=args_opt.epoch_size,
- steps_per_epoch=dataset_size))
- opt = nn.Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, 0.9, 0.0001, loss_scale)
- net = TrainingWrapper(net, opt, loss_scale)
-
- if args_opt.pre_trained:
- param_dict = load_checkpoint(args_opt.pre_trained)
- load_param_into_net(net, param_dict)
-
- callback = [TimeMonitor(data_size=dataset_size), LossMonitor(), ckpoint_cb]
-
- model = Model(net)
- dataset_sink_mode = False
- if args_opt.mode == "sink":
- print("In sink mode, one epoch return a loss.")
- dataset_sink_mode = True
- print("Start train SSD, the first epoch will be slower because of the graph compilation.")
- model.train(args_opt.epoch_size, dataset, callbacks=callback, dataset_sink_mode=dataset_sink_mode)
-
- if __name__ == '__main__':
- main()
|