# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # less required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """train SSD and get checkpoint files.""" import os import math import argparse import numpy as np import mindspore.nn as nn from mindspore import context, Tensor from mindspore.communication.management import init from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMonitor, TimeMonitor from mindspore.train import Model, ParallelMode from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.common.initializer import initializer from mindspore.model_zoo.ssd import SSD300, SSDWithLossCell, TrainingWrapper, ssd_mobilenet_v2 from config import ConfigSSD from dataset import create_ssd_dataset, data_to_mindrecord_byte_image def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch): """ generate learning rate array Args: global_step(int): total steps of the training lr_init(float): init learning rate lr_end(float): end learning rate lr_max(float): max learning rate warmup_epochs(int): number of warmup epochs total_epochs(int): total epoch of training steps_per_epoch(int): steps of one epoch Returns: np.array, learning rate array """ lr_each_step = [] total_steps = steps_per_epoch * total_epochs warmup_steps = steps_per_epoch * warmup_epochs for i in range(total_steps): if i < warmup_steps: lr = lr_init + (lr_max - lr_init) * i / warmup_steps else: lr = lr_end + (lr_max - lr_end) * \ (1. + math.cos(math.pi * (i - warmup_steps) / (total_steps - warmup_steps))) / 2. if lr < 0.0: lr = 0.0 lr_each_step.append(lr) current_step = global_step lr_each_step = np.array(lr_each_step).astype(np.float32) learning_rate = lr_each_step[current_step:] return learning_rate def init_net_param(network, initialize_mode='XavierUniform'): """Init the parameters in net.""" params = network.trainable_params() for p in params: if isinstance(p.data, Tensor) and 'beta' not in p.name and 'gamma' not in p.name and 'bias' not in p.name: p.set_parameter_data(initializer(initialize_mode, p.data.shape(), p.data.dtype())) def main(): parser = argparse.ArgumentParser(description="SSD training") parser.add_argument("--only_create_dataset", type=bool, default=False, help="If set it true, only create " "Mindrecord, default is false.") parser.add_argument("--distribute", type=bool, default=False, help="Run distribute, default is false.") parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.") parser.add_argument("--lr", type=float, default=0.25, help="Learning rate, default is 0.25.") parser.add_argument("--mode", type=str, default="sink", help="Run sink mode or not, default is sink.") parser.add_argument("--dataset", type=str, default="coco", help="Dataset, defalut is coco.") parser.add_argument("--epoch_size", type=int, default=70, help="Epoch size, default is 70.") parser.add_argument("--batch_size", type=int, default=32, help="Batch size, default is 32.") parser.add_argument("--pre_trained", type=str, default=None, help="Pretrained Checkpoint file path.") parser.add_argument("--save_checkpoint_epochs", type=int, default=5, help="Save checkpoint epochs, default is 5.") parser.add_argument("--loss_scale", type=int, default=1024, help="Loss scale, default is 1024.") args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id) if args_opt.distribute: device_num = args_opt.device_num context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True, device_num=device_num) init() rank = args_opt.device_id % device_num else: rank = 0 device_num = 1 print("Start create dataset!") # It will generate mindrecord file in args_opt.mindrecord_dir, # and the file name is ssd.mindrecord0, 1, ... file_num. config = ConfigSSD() prefix = "ssd.mindrecord" mindrecord_dir = config.MINDRECORD_DIR mindrecord_file = os.path.join(mindrecord_dir, prefix + "0") if not os.path.exists(mindrecord_file): if not os.path.isdir(mindrecord_dir): os.makedirs(mindrecord_dir) if args_opt.dataset == "coco": if os.path.isdir(config.COCO_ROOT): print("Create Mindrecord.") data_to_mindrecord_byte_image("coco", True, prefix) print("Create Mindrecord Done, at {}".format(mindrecord_dir)) else: print("COCO_ROOT not exits.") else: if os.path.isdir(config.IMAGE_DIR) and os.path.exists(config.ANNO_PATH): print("Create Mindrecord.") data_to_mindrecord_byte_image("other", True, prefix) print("Create Mindrecord Done, at {}".format(mindrecord_dir)) else: print("IMAGE_DIR or ANNO_PATH not exits.") if not args_opt.only_create_dataset: loss_scale = float(args_opt.loss_scale) # When create MindDataset, using the fitst mindrecord file, such as ssd.mindrecord0. dataset = create_ssd_dataset(mindrecord_file, repeat_num=args_opt.epoch_size, batch_size=args_opt.batch_size, device_num=device_num, rank=rank) dataset_size = dataset.get_dataset_size() print("Create dataset done!") ssd = SSD300(backbone=ssd_mobilenet_v2(), config=config) net = SSDWithLossCell(ssd, config) init_net_param(net) # checkpoint ckpt_config = CheckpointConfig(save_checkpoint_steps=dataset_size * args_opt.save_checkpoint_epochs) ckpoint_cb = ModelCheckpoint(prefix="ssd", directory=None, config=ckpt_config) lr = Tensor(get_lr(global_step=0, lr_init=0, lr_end=0, lr_max=args_opt.lr, warmup_epochs=max(args_opt.epoch_size // 20, 1), total_epochs=args_opt.epoch_size, steps_per_epoch=dataset_size)) opt = nn.Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, 0.9, 0.0001, loss_scale) net = TrainingWrapper(net, opt, loss_scale) if args_opt.pre_trained: param_dict = load_checkpoint(args_opt.pre_trained) load_param_into_net(net, param_dict) callback = [TimeMonitor(data_size=dataset_size), LossMonitor(), ckpoint_cb] model = Model(net) dataset_sink_mode = False if args_opt.mode == "sink": print("In sink mode, one epoch return a loss.") dataset_sink_mode = True print("Start train SSD, the first epoch will be slower because of the graph compilation.") model.train(args_opt.epoch_size, dataset, callbacks=callback, dataset_sink_mode=dataset_sink_mode) if __name__ == '__main__': main()