Merge pull request !729 from 张毅辉/zyh_mindinsight_profiler_sttags/v1.1.0
| @@ -23,3 +23,10 @@ from tests.utils import mindspore | |||
| sys.modules['mindspore'] = mindspore | |||
| BASE_SUMMARY_DIR = os.path.realpath(os.path.join(RAW_DATA_BASE, "run_1")) | |||
| # Notice: | |||
| # 1. Run_2 is new performance data. | |||
| # 2. The names of some files have been changed. \ | |||
| # For example, timeline_display_1.json becomes ascend_timeline_display_1.json. | |||
| # 3. Some new files have been added. For example, aicpu_intermediate_1.csv. | |||
| # 4. It is recommended that the new mindinsight st ut test be based on this version of the performance file. | |||
| BASE_SUMMARY_DIR_RUN_2 = os.path.realpath(os.path.join(RAW_DATA_BASE, "run_2")) | |||
| @@ -0,0 +1,112 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| Fuction: | |||
| Test profiler to watch the performance of training. | |||
| Usage: | |||
| pytest tests/st/func/profiler | |||
| """ | |||
| import os | |||
| import pytest | |||
| from mindinsight.profiler.analyser.minddata_analyser import MinddataAnalyser | |||
| from mindinsight.profiler.analyser.analyser_factory import AnalyserFactory | |||
| from .conftest import BASE_SUMMARY_DIR_RUN_2 | |||
| class TestMinddataAnalyser: | |||
| """Test minddata analyser module.""" | |||
| @classmethod | |||
| def setup_class(cls): | |||
| """Generate parsed files.""" | |||
| cls.summary_dir = os.path.join(BASE_SUMMARY_DIR_RUN_2, 'normal_run') | |||
| cls.profiler = os.path.join(cls.summary_dir, 'profiler') | |||
| def setup_method(self): | |||
| """Create analyser.""" | |||
| self._analyser = AnalyserFactory.instance().get_analyser( | |||
| 'minddata', self.profiler, '1') | |||
| @pytest.mark.level0 | |||
| @pytest.mark.env_single | |||
| @pytest.mark.platform_x86_cpu | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| def test_analyse_queue_summary(self): | |||
| """Test analysing the queue summary info.""" | |||
| expect_result = { | |||
| "data_process": {"status": "normal"}, | |||
| "device_queue_info": {"summary": {"empty_batch_count": 1, "full_batch_count": 0, "total_batch": 1}}, | |||
| "device_queue_op": {"status": "normal"}, | |||
| "get_next": {"status": "normal"}, | |||
| "get_next_queue_info": {"summary": {"empty_batch_count": 0, "total_batch": 3}}, | |||
| "tdt": {"status": "normal"} | |||
| } | |||
| get_next_queue_info, _ = self._analyser.analyse_get_next_info(info_type="queue") | |||
| device_queue_info, _ = self._analyser.analyse_device_queue_info(info_type="queue") | |||
| result = MinddataAnalyser.analyse_queue_summary(get_next_queue_info, device_queue_info) | |||
| assert expect_result == result | |||
| @pytest.mark.level0 | |||
| @pytest.mark.env_single | |||
| @pytest.mark.platform_x86_cpu | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| def test_analyse_get_next_info(self): | |||
| """Test analysing the get_next operation info for info_type="time" """ | |||
| expect_result = { | |||
| "info": {"get_next": [0.001, 0, 0.001]}, | |||
| "size": 3, | |||
| "summary": {"time_summary": {"avg_cost": "0.0006666666666666666"}} | |||
| } | |||
| time_info = { | |||
| "size": 0, | |||
| "info": [], | |||
| "summary": {"time_summary": {}}, | |||
| "advise": {} | |||
| } | |||
| _, time_info = self._analyser.analyse_get_next_info(info_type="time") | |||
| assert expect_result == time_info | |||
| @pytest.mark.level0 | |||
| @pytest.mark.env_single | |||
| @pytest.mark.platform_x86_cpu | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| def test_analyse_device_queue_info(self): | |||
| """Test analysing the device_queue operation info for info_type="time" """ | |||
| expect_result = { | |||
| "info": {"total_cost": [4], "push_cost": [4], "get_cost": [0]}, | |||
| "size": 1, | |||
| "summary": {"time_summary": {"avg_cost": 4, "get_cost": 0, "push_cost": 4}} | |||
| } | |||
| time_info = { | |||
| "size": 0, | |||
| "info": [], | |||
| "summary": {"time_summary": {}}, | |||
| "advise": {} | |||
| } | |||
| _, time_info = self._analyser.analyse_device_queue_info(info_type="time") | |||
| assert expect_result == time_info | |||
| @@ -0,0 +1,63 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| Function: | |||
| Test profiler to watch the performance of training. | |||
| Usage: | |||
| pytest tests/st/func/profiler | |||
| """ | |||
| import os | |||
| import pytest | |||
| from mindinsight.profiler.proposer.compose_proposer import ComposeProposal | |||
| from .conftest import BASE_SUMMARY_DIR_RUN_2 | |||
| class TestProposerAnalyser: | |||
| """Test minddata analyser module.""" | |||
| @classmethod | |||
| def setup_class(cls): | |||
| """Generate parsed files.""" | |||
| cls.summary_dir = os.path.join(BASE_SUMMARY_DIR_RUN_2, 'normal_run') | |||
| cls.profiler = os.path.join(cls.summary_dir, 'profiler') | |||
| @pytest.mark.level0 | |||
| @pytest.mark.env_single | |||
| @pytest.mark.platform_x86_cpu | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| def test_analyser_proposal(self): | |||
| """Test the function of querying the proposals from multiple different proposers""" | |||
| expect_result = { | |||
| "minddata_device_queue": [1, 1, 0, 1], | |||
| "minddata_get_next_queue": [0, 3], | |||
| "minddata_pipeline-dataset_op": ["ImageFolderOp_3"], | |||
| "minddata_pipeline-general": ["ImageFolderOp_3"] | |||
| } | |||
| step_trace_condition = {"filter_condition": {"mode": "proc", | |||
| "proc_name": "iteration_interval", | |||
| "step_id": 0}} | |||
| options = {'step_trace': {"iter_interval": step_trace_condition}} | |||
| proposal_type_list = ['step_trace', 'minddata', 'minddata_pipeline', 'common'] | |||
| proposal_obj = ComposeProposal(self.profiler, '1', proposal_type_list) | |||
| proposal_info = proposal_obj.get_proposal(options) | |||
| assert expect_result["minddata_device_queue"] == proposal_info["minddata_device_queue"] | |||
| assert expect_result["minddata_get_next_queue"] == proposal_info["minddata_get_next_queue"] | |||
| assert expect_result["minddata_pipeline-dataset_op"] == proposal_info["minddata_pipeline-dataset_op"] | |||
| assert expect_result["minddata_pipeline-general"] == proposal_info["minddata_pipeline-general"] | |||
| @@ -19,3 +19,4 @@ RAW_DATA_BASE = os.path.realpath(os.path.join(os.path.dirname(__file__), '../../ | |||
| RAW_DATA = os.path.realpath(os.path.join(RAW_DATA_BASE, 'JOB1')) | |||
| RAW_DATA_JOB2 = os.path.realpath(os.path.join(RAW_DATA_BASE, 'JOB2')) | |||
| PROFILER_DIR = os.path.realpath(os.path.join(RAW_DATA_BASE, 'profiler')) | |||
| BASE_SUMMARY_DIR = os.path.realpath(os.path.join(RAW_DATA_BASE, "run_2")) | |||
| @@ -0,0 +1,57 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| Function: | |||
| Test profiler to watch the performance of training. | |||
| Usage: | |||
| pytest tests/ut/profiler | |||
| """ | |||
| import os | |||
| from unittest import TestCase | |||
| from mindinsight.profiler.analyser.analyser_factory import AnalyserFactory | |||
| from ...profiler import BASE_SUMMARY_DIR | |||
| class TestMinddataAnalyser(TestCase): | |||
| """Test minddata analyser module.""" | |||
| def setUp(self) -> None: | |||
| """Initialization before test case execution.""" | |||
| self.summary_dir = os.path.join(BASE_SUMMARY_DIR, "normal_run") | |||
| self.profiler = os.path.join(self.summary_dir, "profiler") | |||
| self._analyser = AnalyserFactory.instance().get_analyser( | |||
| 'minddata', self.profiler, '1') | |||
| def test_analyse_get_next_info_queue(self): | |||
| """Test analysing the get_next operation info for info_type="queue" """ | |||
| expect_result = { | |||
| "info": {"queue": [3, 2, 1]}, | |||
| "size": 3, | |||
| "summary": {"queue_summary": {"empty_queue": 0}} | |||
| } | |||
| result, _ = self._analyser.analyse_get_next_info(info_type="queue") | |||
| self.assertDictEqual(expect_result, result) | |||
| def test_analyse_device_queue_info_queue(self): | |||
| """Test analysing the device_queue operation info for info_type="queue" """ | |||
| expect_result = { | |||
| "info": {"queue": [0]}, | |||
| "size": 1, | |||
| "summary": {"queue_summary": {"empty_queue": 1, "full_queue": 0}} | |||
| } | |||
| result, _ = self._analyser.analyse_device_queue_info(info_type="queue") | |||
| self.assertDictEqual(expect_result, result) | |||
| @@ -0,0 +1,106 @@ | |||
| full_op_name,execution_time | |||
| Default/AssignAdd-op142,0.00219 | |||
| Default/TransData-op118,0.047035 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/OneHot-op3,0.00176 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/learning_rate-_IteratorLearningRate/GatherV2-op32,0.00153 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/AssignAdd-op31,0.00125 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op91,0.00804 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op110,0.00932 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op111,0.00773 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Cast-op115,0.00696 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Cast-op116,0.00781 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op117,0.00514 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Conv2D-op5,0.06913 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op108,0.00652 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op119,0.0094 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op98,0.00588 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op7,0.00591 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Conv2D-op8,0.02412 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Cast-op109,0.00515 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op120,0.0067 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op99,0.00559 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op10,0.00335 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Conv2D-op11,0.16997 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Cast-op106,0.00419 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op121,0.00624 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op95,0.0047 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Conv2D-op13,0.09617 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op107,0.00372 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op122,0.00626 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op97,0.00435 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Conv2D-op15,0.10168 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op114,0.00465 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op123,0.00468 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op112,0.00376 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op17,0.00297 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op105,0.00399 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/TransData-op124,0.08231 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op19,9.17408 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLU-op21,0.00256 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op22,4.04837 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLU-op24,0.00221 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op25,0.00348 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/SoftmaxCrossEntropyWithLogits-op27,0.00364 | |||
| Default/AtomicAddrClean-op145,0.00128 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/ReduceMean-op87,0.00139 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/gradSoftmaxCrossEntropyWithLogits/Mul-op29,0.00132 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op37,0.00278 | |||
| Default/AtomicAddrClean-op146,0.00113 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op30,0.00139 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op40,0.00247 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGrad-op41,0.00426 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op45,0.22636 | |||
| Default/AtomicAddrClean-op147,0.00143 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op42,0.00182 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op48,2.61685 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGrad-op49,0.00424 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op53,0.33999 | |||
| Default/AtomicAddrClean-op148,0.00144 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op50,0.00183 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op56,4.24336 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/flatten-Flatten/gradReshape/TransData-op125,0.06442 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op113,0.00313 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op58,0.00567 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op104,0.0042 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op126,0.00532 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Cast-op96,0.00377 | |||
| Default/AtomicAddrClean-op149,0.00546 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Conv2DBackpropFilter-op60,0.01194 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Conv2DBackpropInput-op63,0.01106 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Cast-op103,0.00397 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op127,0.00526 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op94,0.0045 | |||
| Default/AtomicAddrClean-op150,0.00615 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropFilter-op65,0.01301 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropInput-op68,0.01392 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op102,0.00387 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op128,0.005 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op93,0.00438 | |||
| Default/AtomicAddrClean-op151,0.00506 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropFilter-op70,0.01246 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropInput-op73,0.02185 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op74,0.01593 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op101,0.00524 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op129,0.00653 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Cast-op92,0.00546 | |||
| Default/AtomicAddrClean-op152,0.00523 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Conv2DBackpropFilter-op76,0.02361 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Conv2DBackpropInput-op79,0.03911 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op80,0.03258 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op100,0.00633 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op130,0.00868 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/gradConv2D/Cast-op90,0.00574 | |||
| Default/AtomicAddrClean-op153,0.00294 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/gradConv2D/Conv2DBackpropFilter-op82,0.04572 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op38,0.00303 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op35,0.00162 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op46,0.34771 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op43,0.0028 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op54,0.78189 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op51,0.00276 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op61,0.02337 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op66,0.0318 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op71,0.02209 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op77,0.01652 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op83,0.00769 | |||
| Default/AssignAdd-op138,0.00148 | |||
| @@ -0,0 +1,22 @@ | |||
| op_type,execution_time,execution_frequency,percent | |||
| AssignAdd,0.00492,3,0.02 | |||
| TransData,0.193765,3,0.84 | |||
| OneHot,0.00176,1,0.01 | |||
| GatherV2,0.00153,1,0.01 | |||
| Cast,0.14809,28,0.64 | |||
| Conv2D,0.46107,5,2.00 | |||
| ReLUV2,0.03328,5,0.14 | |||
| MaxPool,0.01223,3,0.05 | |||
| MatMul,20.65774,9,89.47 | |||
| ReLU,0.00477,2,0.02 | |||
| SoftmaxCrossEntropyWithLogits,0.00364,1,0.02 | |||
| AtomicAddrClean,0.03012,9,0.13 | |||
| ReduceMean,0.00139,1,0.01 | |||
| Mul,0.00132,1,0.01 | |||
| BiasAddGrad,0.00504,3,0.02 | |||
| ReluGrad,0.00850,2,0.04 | |||
| MaxPoolGrad,0.05418,3,0.23 | |||
| ReluGradV2,0.03079,5,0.13 | |||
| Conv2DBackpropFilter,0.10674,5,0.46 | |||
| Conv2DBackpropInput,0.08594,4,0.37 | |||
| ApplyMomentum,1.24128,11,5.38 | |||
| @@ -0,0 +1,6 @@ | |||
| serial_number,op_type,total_time,dispatch_time,run_start,run_end | |||
| 1,InitData,7.906,0.15,154901853050,154901853210 | |||
| 2,GetNext,0.888,0.132,154907895189,154907895707 | |||
| 3,EndOfSequence,0.282,0.078,154907896287,154907896335 | |||
| 4,GetNext,0.293,0.073,154907896880,154907896958 | |||
| 5,EndOfSequence,0.325,0.091,154907920308,154907920348 | |||
| @@ -0,0 +1 @@ | |||
| {"total_time": 23147.013999999992, "num_of_streams": 2, "num_of_ops": 213, "op_exe_times": 112} | |||
| @@ -0,0 +1 @@ | |||
| 1 64 1 3 | |||
| @@ -0,0 +1,4 @@ | |||
| 0 1 1 4 | |||
| 0 2 1 4 | |||
| 0 0 1 0 | |||
| 1 64 1 0 | |||
| @@ -0,0 +1,106 @@ | |||
| task_id,stream_id,block_dim,full_op_name,op_name,op_type,subgraph,op_info | |||
| 4,519,1,Default/AssignAdd-op142,AssignAdd-op142,AssignAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT8"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT8"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT8"", ""shape"": ""1""}}" | |||
| 6,519,32,Default/TransData-op118,TransData-op118,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,3,227,227""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,1,227,227,16""}}" | |||
| 10,519,1,Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/OneHot-op3,OneHot-op3,OneHot,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT8"", ""shape"": ""2""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,2""}}" | |||
| 11,519,1,Default/network-TrainOneStepCell/optimizer-Momentum/learning_rate-_IteratorLearningRate/GatherV2-op32,GatherV2-op32,GatherV2,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT8"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}}" | |||
| 12,519,1,Default/network-TrainOneStepCell/optimizer-Momentum/AssignAdd-op31,AssignAdd-op31,AssignAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT8"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT8"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT8"", ""shape"": """"}}" | |||
| 13,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op91,Cast-op91,Cast,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,1,227,227,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,1,227,227,16""}}" | |||
| 14,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op110,Cast-op110,Cast,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,24,16,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""216,24,16,16""}}" | |||
| 15,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op111,Cast-op111,Cast,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,16,16,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""216,16,16,16""}}" | |||
| 16,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Cast-op115,Cast-op115,Cast,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""150,16,16,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""150,16,16,16""}}" | |||
| 17,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Cast-op116,Cast-op116,Cast,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""144,24,16,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""144,24,16,16""}}" | |||
| 18,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op117,Cast-op117,Cast,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""121,6,16,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""121,6,16,16""}}" | |||
| 19,519,8,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Conv2D-op5,Conv2D-op5,Conv2D,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,1,227,227,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""121,6,16,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,55,55,16""}}" | |||
| 20,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op108,Cast-op108,Cast,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,55,55,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,6,55,55,16""}}" | |||
| 21,519,60,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op119,ReLUV2-op119,ReLUV2,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,6,55,55,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,6,55,55,16""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT64"", ""shape"": ""2,6,55,55,2""}}" | |||
| 22,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op98,Cast-op98,Cast,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,6,55,55,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,55,55,16""}}" | |||
| 23,519,27,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op7,MaxPool-op7,MaxPool,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,55,55,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,27,27,16""}}" | |||
| 24,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Conv2D-op8,Conv2D-op8,Conv2D,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,27,27,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""150,16,16,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,27,27,16""}}" | |||
| 25,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Cast-op109,Cast-op109,Cast,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,27,27,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,27,27,16""}}" | |||
| 26,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op120,ReLUV2-op120,ReLUV2,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,27,27,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,27,27,16""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT64"", ""shape"": ""2,16,27,27,2""}}" | |||
| 27,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op99,Cast-op99,Cast,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,27,27,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,27,27,16""}}" | |||
| 28,519,16,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op10,MaxPool-op10,MaxPool,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,27,27,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}}" | |||
| 29,519,1,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Conv2D-op11,Conv2D-op11,Conv2D,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""144,24,16,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}}" | |||
| 30,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Cast-op106,Cast-op106,Cast,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}}" | |||
| 31,519,48,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op121,ReLUV2-op121,ReLUV2,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT64"", ""shape"": ""2,24,13,13,2""}}" | |||
| 32,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op95,Cast-op95,Cast,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}}" | |||
| 33,519,2,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Conv2D-op13,Conv2D-op13,Conv2D,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""216,24,16,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}}" | |||
| 34,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op107,Cast-op107,Cast,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}}" | |||
| 35,519,48,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op122,ReLUV2-op122,ReLUV2,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT64"", ""shape"": ""2,24,13,13,2""}}" | |||
| 36,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op97,Cast-op97,Cast,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}}" | |||
| 37,519,1,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Conv2D-op15,Conv2D-op15,Conv2D,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""216,16,16,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}}" | |||
| 38,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op114,Cast-op114,Cast,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,13,13,16""}}" | |||
| 39,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op123,ReLUV2-op123,ReLUV2,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,13,13,16""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT64"", ""shape"": ""2,16,13,13,2""}}" | |||
| 40,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op112,Cast-op112,Cast,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}}" | |||
| 41,519,16,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op17,MaxPool-op17,MaxPool,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,6,6,16""}}" | |||
| 42,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op105,Cast-op105,Cast,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,6,6,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,6,6,16""}}" | |||
| 43,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/TransData-op124,TransData-op124,TransData,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,6,6,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,256,6,6""}}" | |||
| 44,519,1,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op19,MatMul-op19,MatMul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,256,6,6""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,9216""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}}" | |||
| 45,519,16,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLU-op21,ReLU-op21,ReLU,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}}" | |||
| 46,519,1,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op22,MatMul-op22,MatMul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,4096""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}}" | |||
| 47,519,16,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLU-op24,ReLU-op24,ReLU,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}}" | |||
| 48,519,1,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op25,MatMul-op25,MatMul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,2""}}" | |||
| 49,519,1,Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/SoftmaxCrossEntropyWithLogits-op27,SoftmaxCrossEntropyWithLogits-op27,SoftmaxCrossEntropyWithLogits,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,2""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,2""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,2""}}" | |||
| 50,519,1,Default/AtomicAddrClean-op145,AtomicAddrClean-op145,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}}" | |||
| 51,519,1,Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/ReduceMean-op87,ReduceMean-op87,ReduceMean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}}" | |||
| 52,519,1,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/gradSoftmaxCrossEntropyWithLogits/Mul-op29,Mul-op29,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,2""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,2""}}" | |||
| 53,519,1,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op37,MatMul-op37,MatMul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,2""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}}" | |||
| 54,519,1,Default/AtomicAddrClean-op146,AtomicAddrClean-op146,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2""}}" | |||
| 55,519,1,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op30,BiasAddGrad-op30,BiasAddGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,2""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2""}}" | |||
| 56,519,1,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op40,MatMul-op40,MatMul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,2""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}}" | |||
| 57,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGrad-op41,ReluGrad-op41,ReluGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}}" | |||
| 58,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op45,MatMul-op45,MatMul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,4096""}}" | |||
| 59,519,1,Default/AtomicAddrClean-op147,AtomicAddrClean-op147,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}}" | |||
| 60,519,2,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op42,BiasAddGrad-op42,BiasAddGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}}" | |||
| 61,519,1,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op48,MatMul-op48,MatMul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,4096""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}}" | |||
| 62,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGrad-op49,ReluGrad-op49,ReluGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}}" | |||
| 63,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op53,MatMul-op53,MatMul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,256,6,6""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,9216""}}" | |||
| 64,519,1,Default/AtomicAddrClean-op148,AtomicAddrClean-op148,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}}" | |||
| 65,519,2,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op50,BiasAddGrad-op50,BiasAddGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}}" | |||
| 66,519,1,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op56,MatMul-op56,MatMul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,9216""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,9216""}}" | |||
| 67,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/flatten-Flatten/gradReshape/TransData-op125,TransData-op125,TransData,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,9216""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,6,6,16""}}" | |||
| 68,519,18,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op113,Cast-op113,Cast,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,6,6,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,6,6,16""}}" | |||
| 69,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op58,MaxPoolGrad-op58,MaxPoolGrad,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}, ""input_1"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,6,6,16""}, ""input_2"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,6,6,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}}" | |||
| 70,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op104,Cast-op104,Cast,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,13,13,16""}}" | |||
| 71,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op126,ReluGradV2-op126,ReluGradV2,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,13,13,16""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT64"", ""shape"": ""2,16,13,13,2""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,13,13,16""}}" | |||
| 72,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Cast-op96,Cast-op96,Cast,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}}" | |||
| 73,519,25,Default/AtomicAddrClean-op149,AtomicAddrClean-op149,AtomicAddrClean,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,16,16,16""}}" | |||
| 74,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Conv2DBackpropFilter-op60,Conv2DBackpropFilter-op60,Conv2DBackpropFilter,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}, ""input_1"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,16,16,16""}}" | |||
| 75,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Conv2DBackpropInput-op63,Conv2DBackpropInput-op63,Conv2DBackpropInput,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""216,16,16,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}}" | |||
| 76,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Cast-op103,Cast-op103,Cast,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}}" | |||
| 77,519,48,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op127,ReluGradV2-op127,ReluGradV2,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT64"", ""shape"": ""2,24,13,13,2""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}}" | |||
| 78,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op94,Cast-op94,Cast,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}}" | |||
| 79,519,28,Default/AtomicAddrClean-op150,AtomicAddrClean-op150,AtomicAddrClean,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,24,16,16""}}" | |||
| 80,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropFilter-op65,Conv2DBackpropFilter-op65,Conv2DBackpropFilter,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}, ""input_1"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,24,16,16""}}" | |||
| 81,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropInput-op68,Conv2DBackpropInput-op68,Conv2DBackpropInput,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""216,24,16,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}}" | |||
| 82,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op102,Cast-op102,Cast,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}}" | |||
| 83,519,48,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op128,ReluGradV2-op128,ReluGradV2,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT64"", ""shape"": ""2,24,13,13,2""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}}" | |||
| 84,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op93,Cast-op93,Cast,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}}" | |||
| 85,519,25,Default/AtomicAddrClean-op151,AtomicAddrClean-op151,AtomicAddrClean,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""144,24,16,16""}}" | |||
| 86,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropFilter-op70,Conv2DBackpropFilter-op70,Conv2DBackpropFilter,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}, ""input_1"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""144,24,16,16""}}" | |||
| 87,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropInput-op73,Conv2DBackpropInput-op73,Conv2DBackpropInput,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""144,24,16,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}}" | |||
| 88,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op74,MaxPoolGrad-op74,MaxPoolGrad,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,27,27,16""}, ""input_1"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}, ""input_2"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,27,27,16""}}" | |||
| 89,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op101,Cast-op101,Cast,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,27,27,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,27,27,16""}}" | |||
| 90,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op129,ReluGradV2-op129,ReluGradV2,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,27,27,16""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT64"", ""shape"": ""2,16,27,27,2""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,27,27,16""}}" | |||
| 91,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Cast-op92,Cast-op92,Cast,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,27,27,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,27,27,16""}}" | |||
| 92,519,26,Default/AtomicAddrClean-op152,AtomicAddrClean-op152,AtomicAddrClean,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""150,16,16,16""}}" | |||
| 93,519,48,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Conv2DBackpropFilter-op76,Conv2DBackpropFilter-op76,Conv2DBackpropFilter,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,27,27,16""}, ""input_1"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,27,27,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""150,16,16,16""}}" | |||
| 94,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Conv2DBackpropInput-op79,Conv2DBackpropInput-op79,Conv2DBackpropInput,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,27,27,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""150,16,16,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,27,27,16""}}" | |||
| 95,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op80,MaxPoolGrad-op80,MaxPoolGrad,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,55,55,16""}, ""input_1"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,27,27,16""}, ""input_2"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,27,27,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,55,55,16""}}" | |||
| 96,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op100,Cast-op100,Cast,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,55,55,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,6,55,55,16""}}" | |||
| 97,519,60,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op130,ReluGradV2-op130,ReluGradV2,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,6,55,55,16""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT64"", ""shape"": ""2,6,55,55,2""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,6,55,55,16""}}" | |||
| 98,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/gradConv2D/Cast-op90,Cast-op90,Cast,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,6,55,55,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,55,55,16""}}" | |||
| 99,519,16,Default/AtomicAddrClean-op153,AtomicAddrClean-op153,AtomicAddrClean,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""121,6,16,16""}}" | |||
| 100,519,38,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/gradConv2D/Conv2DBackpropFilter-op82,Conv2DBackpropFilter-op82,Conv2DBackpropFilter,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,55,55,16""}, ""input_1"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,1,227,227,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""121,6,16,16""}}" | |||
| 101,519,2,Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op38,ApplyMomentum-op38,ApplyMomentum,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}}" | |||
| 102,519,1,Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op35,ApplyMomentum-op35,ApplyMomentum,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2""}}" | |||
| 103,519,32,Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op46,ApplyMomentum-op46,ApplyMomentum,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,4096""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,4096""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,4096""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,4096""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,4096""}}" | |||
| 104,519,1,Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op43,ApplyMomentum-op43,ApplyMomentum,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}}" | |||
| 105,519,32,Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op54,ApplyMomentum-op54,ApplyMomentum,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,9216""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,9216""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,9216""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,9216""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,9216""}}" | |||
| 106,519,1,Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op51,ApplyMomentum-op51,ApplyMomentum,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}}" | |||
| 107,519,28,Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op61,ApplyMomentum-op61,ApplyMomentum,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,16,16,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,16,16,16""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}, ""input_3"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,16,16,16""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,16,16,16""}, ""output_1"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,16,16,16""}}" | |||
| 108,519,31,Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op66,ApplyMomentum-op66,ApplyMomentum,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,24,16,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,24,16,16""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}, ""input_3"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,24,16,16""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,24,16,16""}, ""output_1"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,24,16,16""}}" | |||
| 109,519,28,Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op71,ApplyMomentum-op71,ApplyMomentum,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""144,24,16,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""144,24,16,16""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}, ""input_3"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""144,24,16,16""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""144,24,16,16""}, ""output_1"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""144,24,16,16""}}" | |||
| 110,519,29,Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op77,ApplyMomentum-op77,ApplyMomentum,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""150,16,16,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""150,16,16,16""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}, ""input_3"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""150,16,16,16""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""150,16,16,16""}, ""output_1"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""150,16,16,16""}}" | |||
| 111,519,18,Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op83,ApplyMomentum-op83,ApplyMomentum,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""121,6,16,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""121,6,16,16""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}, ""input_3"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""121,6,16,16""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""121,6,16,16""}, ""output_1"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""121,6,16,16""}}" | |||
| 112,519,1,Default/AssignAdd-op138,AssignAdd-op138,AssignAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT8"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT8"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT8"", ""shape"": ""1""}}" | |||
| @@ -0,0 +1,3 @@ | |||
| GetNext_dequeue_wait 154907895305 154907895306 3 | |||
| GetNext_dequeue_wait 154907895614 154907895614 2 | |||
| GetNext_dequeue_wait 154907896920 154907896921 1 | |||
| @@ -0,0 +1,5 @@ | |||
| op_id,op_type,num_workers,output_queue_size,output_queue_average_size,output_queue_length,output_queue_usage_rate,sample_interval,parent_id,children_id | |||
| 0,BatchOp,4,"[0, 2]",1.0,64,0.015625,10,,[1] | |||
| 1,MapOp,8,"[0, 0]",0.0,128,0.0,10,0,[2] | |||
| 2,MapOp,8,"[0, 0]",0.0,128,0.0,10,1,[3] | |||
| 3,ImageFolderOp,8,"[0, 0]",0.0,128,0.0,10,2, | |||
| @@ -0,0 +1,7 @@ | |||
| serial_number node_type_name total_time(ms) dispatch_time(ms) run_start run_end | |||
| 1 InitData 7.906 0.15 154901853050 154901853210 | |||
| 2 GetNext 0.888 0.132 154907895189 154907895707 | |||
| 3 EndOfSequence 0.282 0.078 154907896287 154907896335 | |||
| 4 GetNext 0.293 0.073 154907896880 154907896958 | |||
| 5 EndOfSequence 0.325 0.091 154907920308 154907920348 | |||
| AI CPU Total Time(ms): 9.694000 | |||
| @@ -0,0 +1,271 @@ | |||
| ====================45 HWTS data==================== | |||
| Type cnt Core_ID Block_ID Task_ID Cycle_counter Stream_ID | |||
| Start of task 0 0 0 517_2 15490184485134 517 | |||
| End of task 1 0 0 517_2 15490184485134 517 | |||
| Start of task 2 0 0 520_2 15490185343879 520 | |||
| End of task 3 0 0 520_2 15490185343880 520 | |||
| Start of task 4 0 0 517_4 15490185488116 517 | |||
| End of task 5 0 0 517_4 15490185488117 517 | |||
| Start of task 6 0 0 517_6 15490782610374 517 | |||
| End of task 7 0 0 517_6 15490782610375 517 | |||
| Start of task 8 0 0 524_2 15490789478422 524 | |||
| Start of task 9 0 0 519_2 15490789484734 519 | |||
| Start of task 10 0 0 514_3 15490789585192 514 | |||
| End of task 11 0 0 514_3 15490789585193 514 | |||
| Start of task 12 0 0 514_4 15490789585203 514 | |||
| End of task 13 0 0 514_4 15490789585204 514 | |||
| Start of task 14 0 0 519_3 15490789595940 519 | |||
| End of task 15 0 0 519_3 15490789595945 519 | |||
| Start of task 0 0 0 519_4 15490789595956 519 | |||
| End of task 1 0 0 519_4 15490789596266 519 | |||
| Start of task 2 0 0 519_5 15490789596276 519 | |||
| End of task 3 0 0 519_5 15490789596507 519 | |||
| Start of task 4 0 0 519_6 15490789596517 519 | |||
| Start of task 5 0 0 524_3 15490789598121 524 | |||
| End of task 6 0 0 524_3 15490789598125 524 | |||
| End of task 7 0 0 519_6 15490789601181 519 | |||
| Start of task 8 0 0 519_7 15490789601191 519 | |||
| Start of task 9 0 0 524_7 15490789646036 524 | |||
| End of task 10 0 0 524_7 15490789646036 524 | |||
| Start of task 11 0 0 519_8 15490789654842 519 | |||
| End of task 12 0 0 519_8 15490789654847 519 | |||
| Start of task 13 0 0 519_10 15490789664191 519 | |||
| End of task 14 0 0 519_10 15490789664367 519 | |||
| Start of task 15 0 0 519_11 15490789664377 519 | |||
| End of task 0 0 0 519_11 15490789664530 519 | |||
| Start of task 1 0 0 519_12 15490789664540 519 | |||
| End of task 2 0 0 519_12 15490789664665 519 | |||
| Start of task 3 0 0 519_13 15490789664675 519 | |||
| End of task 4 0 0 519_13 15490789665479 519 | |||
| Start of task 5 0 0 519_14 15490789665490 519 | |||
| End of task 6 0 0 519_14 15490789666422 519 | |||
| Start of task 7 0 0 519_15 15490789666432 519 | |||
| End of task 8 0 0 519_15 15490789667205 519 | |||
| Start of task 9 0 0 519_16 15490789667215 519 | |||
| End of task 10 0 0 519_16 15490789667911 519 | |||
| Start of task 11 0 0 519_17 15490789667921 519 | |||
| End of task 12 0 0 519_17 15490789668702 519 | |||
| Start of task 13 0 0 519_18 15490789668712 519 | |||
| End of task 14 0 0 519_18 15490789669226 519 | |||
| Start of task 15 0 0 519_19 15490789669236 519 | |||
| End of task 0 0 0 519_19 15490789676149 519 | |||
| Start of task 1 0 0 519_20 15490789676159 519 | |||
| End of task 2 0 0 519_20 15490789676811 519 | |||
| Start of task 3 0 0 519_21 15490789676821 519 | |||
| End of task 4 0 0 519_21 15490789677761 519 | |||
| Start of task 5 0 0 519_22 15490789677771 519 | |||
| End of task 6 0 0 519_22 15490789678359 519 | |||
| Start of task 7 0 0 519_23 15490789678370 519 | |||
| End of task 8 0 0 519_23 15490789678961 519 | |||
| Start of task 9 0 0 519_24 15490789678971 519 | |||
| End of task 10 0 0 519_24 15490789681383 519 | |||
| Start of task 11 0 0 519_25 15490789681393 519 | |||
| End of task 12 0 0 519_25 15490789681908 519 | |||
| Start of task 13 0 0 519_26 15490789681919 519 | |||
| End of task 14 0 0 519_26 15490789682589 519 | |||
| Start of task 15 0 0 519_27 15490789682600 519 | |||
| End of task 0 0 0 519_27 15490789683159 519 | |||
| Start of task 1 0 0 519_28 15490789683169 519 | |||
| End of task 2 0 0 519_28 15490789683504 519 | |||
| Start of task 3 0 0 519_29 15490789683514 519 | |||
| End of task 4 0 0 519_29 15490789700511 519 | |||
| Start of task 5 0 0 519_30 15490789700521 519 | |||
| End of task 6 0 0 519_30 15490789700940 519 | |||
| Start of task 7 0 0 519_31 15490789700950 519 | |||
| End of task 8 0 0 519_31 15490789701574 519 | |||
| Start of task 9 0 0 519_32 15490789701584 519 | |||
| End of task 10 0 0 519_32 15490789702054 519 | |||
| Start of task 11 0 0 519_33 15490789702064 519 | |||
| Start of task 12 0 0 514_3 15490789708461 514 | |||
| End of task 13 0 0 514_3 15490789708461 514 | |||
| Start of task 14 0 0 514_4 15490789708472 514 | |||
| End of task 15 0 0 514_4 15490789708472 514 | |||
| End of task 0 0 0 519_33 15490789711681 519 | |||
| Start of task 1 0 0 519_34 15490789711691 519 | |||
| End of task 2 0 0 519_34 15490789712063 519 | |||
| Start of task 3 0 0 519_35 15490789712073 519 | |||
| End of task 4 0 0 519_35 15490789712699 519 | |||
| Start of task 5 0 0 519_36 15490789712709 519 | |||
| End of task 6 0 0 519_36 15490789713144 519 | |||
| Start of task 7 0 0 519_37 15490789713154 519 | |||
| End of task 8 0 0 519_37 15490789723322 519 | |||
| Start of task 9 0 0 519_38 15490789723332 519 | |||
| End of task 10 0 0 519_38 15490789723797 519 | |||
| Start of task 11 0 0 519_39 15490789723808 519 | |||
| End of task 12 0 0 519_39 15490789724276 519 | |||
| Start of task 13 0 0 519_40 15490789724286 519 | |||
| End of task 14 0 0 519_40 15490789724662 519 | |||
| Start of task 15 0 0 519_41 15490789724672 519 | |||
| End of task 0 0 0 519_41 15490789724969 519 | |||
| Start of task 1 0 0 519_42 15490789724979 519 | |||
| End of task 2 0 0 519_42 15490789725378 519 | |||
| Start of task 3 0 0 519_43 15490789725388 519 | |||
| End of task 4 0 0 519_43 15490789733619 519 | |||
| Start of task 5 0 0 519_44 15490789733629 519 | |||
| End of task 6 0 0 519_44 15490790651037 519 | |||
| Start of task 7 0 0 519_45 15490790651047 519 | |||
| End of task 8 0 0 519_45 15490790651303 519 | |||
| Start of task 9 0 0 519_46 15490790651313 519 | |||
| End of task 10 0 0 519_46 15490791056150 519 | |||
| Start of task 11 0 0 519_47 15490791056161 519 | |||
| End of task 12 0 0 519_47 15490791056382 519 | |||
| Start of task 13 0 0 519_48 15490791056392 519 | |||
| End of task 14 0 0 519_48 15490791056740 519 | |||
| Start of task 15 0 0 519_49 15490791056750 519 | |||
| End of task 0 0 0 519_49 15490791057114 519 | |||
| Start of task 1 0 0 519_50 15490791057125 519 | |||
| End of task 2 0 0 519_50 15490791057253 519 | |||
| Start of task 3 0 0 519_51 15490791057263 519 | |||
| End of task 4 0 0 519_51 15490791057402 519 | |||
| Start of task 5 0 0 519_52 15490791057413 519 | |||
| End of task 6 0 0 519_52 15490791057545 519 | |||
| Start of task 7 0 0 519_53 15490791057556 519 | |||
| End of task 8 0 0 519_53 15490791057834 519 | |||
| Start of task 9 0 0 519_54 15490791057845 519 | |||
| End of task 10 0 0 519_54 15490791057958 519 | |||
| Start of task 11 0 0 519_55 15490791057968 519 | |||
| End of task 12 0 0 519_55 15490791058107 519 | |||
| Start of task 13 0 0 519_56 15490791058117 519 | |||
| End of task 14 0 0 519_56 15490791058364 519 | |||
| Start of task 15 0 0 519_57 15490791058374 519 | |||
| End of task 0 0 0 519_57 15490791058800 519 | |||
| Start of task 1 0 0 519_58 15490791058810 519 | |||
| End of task 2 0 0 519_58 15490791081446 519 | |||
| Start of task 3 0 0 519_59 15490791081456 519 | |||
| End of task 4 0 0 519_59 15490791081599 519 | |||
| Start of task 5 0 0 519_60 15490791081609 519 | |||
| End of task 6 0 0 519_60 15490791081791 519 | |||
| Start of task 7 0 0 519_61 15490791081802 519 | |||
| End of task 8 0 0 519_61 15490791343487 519 | |||
| Start of task 9 0 0 519_62 15490791343498 519 | |||
| End of task 10 0 0 519_62 15490791343922 519 | |||
| Start of task 11 0 0 519_63 15490791343932 519 | |||
| End of task 12 0 0 519_63 15490791377931 519 | |||
| Start of task 13 0 0 519_64 15490791377941 519 | |||
| End of task 14 0 0 519_64 15490791378085 519 | |||
| Start of task 15 0 0 519_65 15490791378096 519 | |||
| End of task 0 0 0 519_65 15490791378279 519 | |||
| Start of task 1 0 0 519_66 15490791378289 519 | |||
| End of task 2 0 0 519_66 15490791802625 519 | |||
| Start of task 3 0 0 519_67 15490791802635 519 | |||
| End of task 4 0 0 519_67 15490791809077 519 | |||
| Start of task 5 0 0 519_68 15490791809087 519 | |||
| End of task 6 0 0 519_68 15490791809400 519 | |||
| Start of task 7 0 0 519_69 15490791809411 519 | |||
| End of task 8 0 0 519_69 15490791809978 519 | |||
| Start of task 9 0 0 519_70 15490791809989 519 | |||
| End of task 10 0 0 519_70 15490791810409 519 | |||
| Start of task 11 0 0 519_71 15490791810419 519 | |||
| End of task 12 0 0 519_71 15490791810951 519 | |||
| Start of task 13 0 0 519_72 15490791810962 519 | |||
| End of task 14 0 0 519_72 15490791811339 519 | |||
| Start of task 15 0 0 519_73 15490791811349 519 | |||
| End of task 0 0 0 519_73 15490791811895 519 | |||
| Start of task 1 0 0 519_74 15490791811906 519 | |||
| End of task 2 0 0 519_74 15490791813100 519 | |||
| Start of task 3 0 0 519_75 15490791813111 519 | |||
| End of task 4 0 0 519_75 15490791814217 519 | |||
| Start of task 5 0 0 519_76 15490791814227 519 | |||
| End of task 6 0 0 519_76 15490791814624 519 | |||
| Start of task 7 0 0 519_77 15490791814634 519 | |||
| End of task 8 0 0 519_77 15490791815160 519 | |||
| Start of task 9 0 0 519_78 15490791815170 519 | |||
| End of task 10 0 0 519_78 15490791815620 519 | |||
| Start of task 11 0 0 519_79 15490791815630 519 | |||
| End of task 12 0 0 519_79 15490791816245 519 | |||
| Start of task 13 0 0 519_80 15490791816255 519 | |||
| End of task 14 0 0 519_80 15490791817556 519 | |||
| Start of task 15 0 0 519_81 15490791817566 519 | |||
| End of task 0 0 0 519_81 15490791818958 519 | |||
| Start of task 1 0 0 519_82 15490791818968 519 | |||
| End of task 2 0 0 519_82 15490791819355 519 | |||
| Start of task 3 0 0 519_83 15490791819365 519 | |||
| End of task 4 0 0 519_83 15490791819865 519 | |||
| Start of task 5 0 0 519_84 15490791819875 519 | |||
| End of task 6 0 0 519_84 15490791820313 519 | |||
| Start of task 7 0 0 519_85 15490791820323 519 | |||
| End of task 8 0 0 519_85 15490791820829 519 | |||
| Start of task 9 0 0 519_86 15490791820839 519 | |||
| End of task 10 0 0 519_86 15490791822085 519 | |||
| Start of task 11 0 0 519_87 15490791822095 519 | |||
| End of task 12 0 0 519_87 15490791824280 519 | |||
| Start of task 13 0 0 519_88 15490791824291 519 | |||
| End of task 14 0 0 519_88 15490791825884 519 | |||
| Start of task 15 0 0 519_89 15490791825894 519 | |||
| End of task 0 0 0 519_89 15490791826418 519 | |||
| Start of task 1 0 0 519_90 15490791826428 519 | |||
| End of task 2 0 0 519_90 15490791827081 519 | |||
| Start of task 3 0 0 519_91 15490791827091 519 | |||
| End of task 4 0 0 519_91 15490791827637 519 | |||
| Start of task 5 0 0 519_92 15490791827647 519 | |||
| End of task 6 0 0 519_92 15490791828170 519 | |||
| Start of task 7 0 0 519_93 15490791828180 519 | |||
| End of task 8 0 0 519_93 15490791830541 519 | |||
| Start of task 9 0 0 519_94 15490791830551 519 | |||
| End of task 10 0 0 519_94 15490791834462 519 | |||
| Start of task 11 0 0 519_95 15490791834472 519 | |||
| End of task 12 0 0 519_95 15490791837730 519 | |||
| Start of task 13 0 0 519_96 15490791837741 519 | |||
| End of task 14 0 0 519_96 15490791838374 519 | |||
| Start of task 15 0 0 519_97 15490791838384 519 | |||
| End of task 0 0 0 519_97 15490791839252 519 | |||
| Start of task 1 0 0 519_98 15490791839263 519 | |||
| End of task 2 0 0 519_98 15490791839837 519 | |||
| Start of task 3 0 0 519_99 15490791839847 519 | |||
| End of task 4 0 0 519_99 15490791840141 519 | |||
| Start of task 5 0 0 519_100 15490791840151 519 | |||
| End of task 6 0 0 519_100 15490791844723 519 | |||
| Start of task 7 0 0 519_101 15490791844733 519 | |||
| End of task 8 0 0 519_101 15490791845036 519 | |||
| Start of task 9 0 0 519_102 15490791845046 519 | |||
| End of task 10 0 0 519_102 15490791845208 519 | |||
| Start of task 11 0 0 519_103 15490791845219 519 | |||
| End of task 12 0 0 519_103 15490791879990 519 | |||
| Start of task 13 0 0 519_104 15490791880000 519 | |||
| End of task 14 0 0 519_104 15490791880280 519 | |||
| Start of task 15 0 0 519_105 15490791880291 519 | |||
| End of task 0 0 0 519_105 15490791958480 519 | |||
| Start of task 1 0 0 519_106 15490791958490 519 | |||
| End of task 2 0 0 519_106 15490791958766 519 | |||
| Start of task 3 0 0 519_107 15490791958776 519 | |||
| End of task 4 0 0 519_107 15490791961113 519 | |||
| Start of task 5 0 0 519_108 15490791961123 519 | |||
| End of task 6 0 0 519_108 15490791964303 519 | |||
| Start of task 7 0 0 519_109 15490791964313 519 | |||
| End of task 8 0 0 519_109 15490791966522 519 | |||
| Start of task 9 0 0 519_110 15490791966532 519 | |||
| End of task 10 0 0 519_110 15490791968184 519 | |||
| Start of task 11 0 0 519_111 15490791968194 519 | |||
| End of task 12 0 0 519_111 15490791968963 519 | |||
| Start of task 13 0 0 519_112 15490791968973 519 | |||
| End of task 14 0 0 519_112 15490791969121 519 | |||
| Start of task 15 0 0 524_2 15490791992232 524 | |||
| End of task 0 0 0 524_2 15490791992233 524 | |||
| Start of task 1 0 0 524_3 15490791992243 524 | |||
| End of task 2 0 0 524_3 15490791992248 524 | |||
| Start of task 3 0 0 519_2 15490791998414 519 | |||
| End of task 4 0 0 519_2 15490791998414 519 | |||
| Start of task 5 0 0 519_3 15490791998430 519 | |||
| End of task 6 0 0 519_3 15490791998435 519 | |||
| Start of task 7 0 0 519_4 15490791998449 519 | |||
| End of task 8 0 0 519_4 15490791998577 519 | |||
| Start of task 9 0 0 519_5 15490791998587 519 | |||
| End of task 10 0 0 519_5 15490791998684 519 | |||
| Start of task 11 0 0 519_6 15490791998694 519 | |||
| End of task 12 0 0 519_6 15490792003437 519 | |||
| Start of task 13 0 0 519_7 15490792003447 519 | |||
| Start of task 14 0 0 520_6 15490792062509 520 | |||
| End of task 15 0 0 520_6 15490792062509 520 | |||
| Start of task 0 0 0 517_8 15490856795304 517 | |||
| End of task 1 0 0 517_8 15490856795304 517 | |||
| Start of task 2 0 0 517_10 15490856924349 517 | |||
| End of task 3 0 0 517_10 15490856924349 517 | |||
| Start of task 4 0 0 517_12 15490857022641 517 | |||
| End of task 5 0 0 517_12 15490857022642 517 | |||
| Start of task 6 0 0 517_14 15490857113001 517 | |||
| End of task 7 0 0 517_14 15490857113001 517 | |||
| Start of task 8 0 0 517_16 15490857205450 517 | |||
| End of task 9 0 0 517_16 15490857205451 517 | |||
| Start of task 10 0 0 517_18 15490857296015 517 | |||
| End of task 11 0 0 517_18 15490857296016 517 | |||
| @@ -0,0 +1,109 @@ | |||
| ====================op compute time==================== | |||
| op_name compute_time(ms) stream_id | |||
| ------------ --------------- --------- | |||
| Default/AssignAdd-op142 0.00219 519 | |||
| Default/TransData-op118 0.047035 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/OneHot-op3 0.00176 519 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/learning_rate-_IteratorLearningRate/GatherV2-op32 0.00153 519 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/AssignAdd-op31 0.00125 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op91 0.00804 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op110 0.00932 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op111 0.00773 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Cast-op115 0.00696 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Cast-op116 0.00781 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op117 0.00514 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Conv2D-op5 0.06913 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op108 0.00652 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op119 0.0094 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op98 0.00588 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op7 0.00591 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Conv2D-op8 0.02412 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Cast-op109 0.00515 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op120 0.0067 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op99 0.00559 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op10 0.00335 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Conv2D-op11 0.16997 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Cast-op106 0.00419 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op121 0.00624 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op95 0.0047 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Conv2D-op13 0.09617 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op107 0.00372 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op122 0.00626 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op97 0.00435 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Conv2D-op15 0.10168 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op114 0.00465 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op123 0.00468 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op112 0.00376 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op17 0.00297 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op105 0.00399 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/TransData-op124 0.08231 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op19 9.17408 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLU-op21 0.00256 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op22 4.04837 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLU-op24 0.00221 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op25 0.00348 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/SoftmaxCrossEntropyWithLogits-op27 0.00364 519 | |||
| Default/AtomicAddrClean-op145 0.00128 519 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/ReduceMean-op87 0.00139 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/gradSoftmaxCrossEntropyWithLogits/Mul-op29 0.00132 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op37 0.00278 519 | |||
| Default/AtomicAddrClean-op146 0.00113 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op30 0.00139 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op40 0.00247 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGrad-op41 0.00426 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op45 0.22636 519 | |||
| Default/AtomicAddrClean-op147 0.00143 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op42 0.00182 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op48 2.61685 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGrad-op49 0.00424 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op53 0.33999 519 | |||
| Default/AtomicAddrClean-op148 0.00144 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op50 0.00183 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op56 4.24336 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/flatten-Flatten/gradReshape/TransData-op125 0.06442 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op113 0.00313 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op58 0.00567 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op104 0.0042 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op126 0.00532 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Cast-op96 0.00377 519 | |||
| Default/AtomicAddrClean-op149 0.00546 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Conv2DBackpropFilter-op60 0.01194 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Conv2DBackpropInput-op63 0.01106 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Cast-op103 0.00397 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op127 0.00526 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op94 0.0045 519 | |||
| Default/AtomicAddrClean-op150 0.00615 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropFilter-op65 0.01301 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropInput-op68 0.01392 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op102 0.00387 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op128 0.005 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op93 0.00438 519 | |||
| Default/AtomicAddrClean-op151 0.00506 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropFilter-op70 0.01246 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropInput-op73 0.02185 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op74 0.01593 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op101 0.00524 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op129 0.00653 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Cast-op92 0.00546 519 | |||
| Default/AtomicAddrClean-op152 0.00523 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Conv2DBackpropFilter-op76 0.02361 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Conv2DBackpropInput-op79 0.03911 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op80 0.03258 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op100 0.00633 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op130 0.00868 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/gradConv2D/Cast-op90 0.00574 519 | |||
| Default/AtomicAddrClean-op153 0.00294 519 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/gradConv2D/Conv2DBackpropFilter-op82 0.04572 519 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op38 0.00303 519 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op35 0.00162 519 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op46 0.34771 519 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op43 0.0028 519 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op54 0.78189 519 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op51 0.00276 519 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op61 0.02337 519 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op66 0.0318 519 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op71 0.02209 519 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op77 0.01652 519 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op83 0.00769 519 | |||
| Default/AssignAdd-op138 0.00148 519 | |||
| total op 23.088094999999996 0 | |||
| @@ -0,0 +1,131 @@ | |||
| ====================op compute time==================== | |||
| optype_name compute_time(ms, per-step) called_times(per-step) percent | |||
| AssignAdd 0.00492 3 0.02 | |||
| TransData 0.193765 3 0.84 | |||
| OneHot 0.00176 1 0.01 | |||
| GatherV2 0.00153 1 0.01 | |||
| Cast 0.14809 28 0.64 | |||
| Conv2D 0.46107 5 2.0 | |||
| ReLUV2 0.03328 5 0.14 | |||
| MaxPool 0.01223 3 0.05 | |||
| MatMul 20.65774 9 89.47 | |||
| ReLU 0.00477 2 0.02 | |||
| SoftmaxCrossEntropyWithLogits 0.00364 1 0.02 | |||
| AtomicAddrClean 0.03012 9 0.13 | |||
| ReduceMean 0.00139 1 0.01 | |||
| Mul 0.00132 1 0.01 | |||
| BiasAddGrad 0.00504 3 0.02 | |||
| ReluGrad 0.0085 2 0.04 | |||
| MaxPoolGrad 0.05418 3 0.23 | |||
| ReluGradV2 0.03079 5 0.13 | |||
| Conv2DBackpropFilter 0.10674 5 0.46 | |||
| Conv2DBackpropInput 0.08594 4 0.37 | |||
| ApplyMomentum 1.24128 11 5.38 | |||
| Detail: | |||
| op_name op_type avg_execution_time subgraph full_op_name | |||
| AssignAdd-op142 AssignAdd 0.00219 Default Default/AssignAdd-op142 | |||
| AssignAdd-op138 AssignAdd 0.00148 Default Default/AssignAdd-op138 | |||
| AssignAdd-op31 AssignAdd 0.00125 Default Default/network-TrainOneStepCell/optimizer-Momentum/AssignAdd-op31 | |||
| TransData-op124 TransData 0.08231 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/TransData-op124 | |||
| TransData-op125 TransData 0.06442 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/flatten-Flatten/gradReshape/TransData-op125 | |||
| TransData-op118 TransData 0.047035 Default Default/TransData-op118 | |||
| OneHot-op3 OneHot 0.00176 Default Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/OneHot-op3 | |||
| GatherV2-op32 GatherV2 0.00153 Default Default/network-TrainOneStepCell/optimizer-Momentum/learning_rate-_IteratorLearningRate/GatherV2-op32 | |||
| Cast-op110 Cast 0.00932 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op110 | |||
| Cast-op91 Cast 0.00804 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op91 | |||
| Cast-op116 Cast 0.00781 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Cast-op116 | |||
| Cast-op111 Cast 0.00773 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op111 | |||
| Cast-op115 Cast 0.00696 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Cast-op115 | |||
| Cast-op108 Cast 0.00652 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op108 | |||
| Cast-op100 Cast 0.00633 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op100 | |||
| Cast-op98 Cast 0.00588 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op98 | |||
| Cast-op90 Cast 0.00574 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/gradConv2D/Cast-op90 | |||
| Cast-op99 Cast 0.00559 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op99 | |||
| Cast-op92 Cast 0.00546 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Cast-op92 | |||
| Cast-op101 Cast 0.00524 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op101 | |||
| Cast-op109 Cast 0.00515 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Cast-op109 | |||
| Cast-op117 Cast 0.00514 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op117 | |||
| Cast-op95 Cast 0.0047 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op95 | |||
| Cast-op114 Cast 0.00465 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op114 | |||
| Cast-op94 Cast 0.0045 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op94 | |||
| Cast-op93 Cast 0.00438 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op93 | |||
| Cast-op97 Cast 0.00435 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op97 | |||
| Cast-op104 Cast 0.0042 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op104 | |||
| Cast-op106 Cast 0.00419 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Cast-op106 | |||
| Cast-op105 Cast 0.00399 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op105 | |||
| Cast-op103 Cast 0.00397 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Cast-op103 | |||
| Cast-op102 Cast 0.00387 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op102 | |||
| Cast-op96 Cast 0.00377 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Cast-op96 | |||
| Cast-op112 Cast 0.00376 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op112 | |||
| Cast-op107 Cast 0.00372 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op107 | |||
| Cast-op113 Cast 0.00313 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op113 | |||
| Conv2D-op11 Conv2D 0.16997 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Conv2D-op11 | |||
| Conv2D-op15 Conv2D 0.10168 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Conv2D-op15 | |||
| Conv2D-op13 Conv2D 0.09617 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Conv2D-op13 | |||
| Conv2D-op5 Conv2D 0.06913 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Conv2D-op5 | |||
| Conv2D-op8 Conv2D 0.02412 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Conv2D-op8 | |||
| ReLUV2-op119 ReLUV2 0.0094 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op119 | |||
| ReLUV2-op120 ReLUV2 0.0067 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op120 | |||
| ReLUV2-op122 ReLUV2 0.00626 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op122 | |||
| ReLUV2-op121 ReLUV2 0.00624 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op121 | |||
| ReLUV2-op123 ReLUV2 0.00468 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op123 | |||
| MaxPool-op7 MaxPool 0.00591 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op7 | |||
| MaxPool-op10 MaxPool 0.00335 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op10 | |||
| MaxPool-op17 MaxPool 0.00297 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op17 | |||
| MatMul-op19 MatMul 9.17408 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op19 | |||
| MatMul-op56 MatMul 4.24336 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op56 | |||
| MatMul-op22 MatMul 4.04837 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op22 | |||
| MatMul-op48 MatMul 2.61685 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op48 | |||
| MatMul-op53 MatMul 0.33999 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op53 | |||
| MatMul-op45 MatMul 0.22636 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op45 | |||
| MatMul-op25 MatMul 0.00348 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op25 | |||
| MatMul-op37 MatMul 0.00278 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op37 | |||
| MatMul-op40 MatMul 0.00247 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op40 | |||
| ReLU-op21 ReLU 0.00256 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLU-op21 | |||
| ReLU-op24 ReLU 0.00221 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLU-op24 | |||
| SoftmaxCrossEntropyWithLogits-op27 SoftmaxCrossEntropyWithLogits 0.00364 Default Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/SoftmaxCrossEntropyWithLogits-op27 | |||
| AtomicAddrClean-op150 AtomicAddrClean 0.00615 Default Default/AtomicAddrClean-op150 | |||
| AtomicAddrClean-op149 AtomicAddrClean 0.00546 Default Default/AtomicAddrClean-op149 | |||
| AtomicAddrClean-op152 AtomicAddrClean 0.00523 Default Default/AtomicAddrClean-op152 | |||
| AtomicAddrClean-op151 AtomicAddrClean 0.00506 Default Default/AtomicAddrClean-op151 | |||
| AtomicAddrClean-op153 AtomicAddrClean 0.00294 Default Default/AtomicAddrClean-op153 | |||
| AtomicAddrClean-op148 AtomicAddrClean 0.00144 Default Default/AtomicAddrClean-op148 | |||
| AtomicAddrClean-op147 AtomicAddrClean 0.00143 Default Default/AtomicAddrClean-op147 | |||
| AtomicAddrClean-op145 AtomicAddrClean 0.00128 Default Default/AtomicAddrClean-op145 | |||
| AtomicAddrClean-op146 AtomicAddrClean 0.00113 Default Default/AtomicAddrClean-op146 | |||
| ReduceMean-op87 ReduceMean 0.00139 Default Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/ReduceMean-op87 | |||
| Mul-op29 Mul 0.00132 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/gradSoftmaxCrossEntropyWithLogits/Mul-op29 | |||
| BiasAddGrad-op50 BiasAddGrad 0.00183 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op50 | |||
| BiasAddGrad-op42 BiasAddGrad 0.00182 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op42 | |||
| BiasAddGrad-op30 BiasAddGrad 0.00139 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op30 | |||
| ReluGrad-op41 ReluGrad 0.00426 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGrad-op41 | |||
| ReluGrad-op49 ReluGrad 0.00424 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGrad-op49 | |||
| MaxPoolGrad-op80 MaxPoolGrad 0.03258 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op80 | |||
| MaxPoolGrad-op74 MaxPoolGrad 0.01593 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op74 | |||
| MaxPoolGrad-op58 MaxPoolGrad 0.00567 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op58 | |||
| ReluGradV2-op130 ReluGradV2 0.00868 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op130 | |||
| ReluGradV2-op129 ReluGradV2 0.00653 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op129 | |||
| ReluGradV2-op126 ReluGradV2 0.00532 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op126 | |||
| ReluGradV2-op127 ReluGradV2 0.00526 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op127 | |||
| ReluGradV2-op128 ReluGradV2 0.005 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op128 | |||
| Conv2DBackpropFilter-op82 Conv2DBackpropFilter 0.04572 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/gradConv2D/Conv2DBackpropFilter-op82 | |||
| Conv2DBackpropFilter-op76 Conv2DBackpropFilter 0.02361 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Conv2DBackpropFilter-op76 | |||
| Conv2DBackpropFilter-op65 Conv2DBackpropFilter 0.01301 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropFilter-op65 | |||
| Conv2DBackpropFilter-op70 Conv2DBackpropFilter 0.01246 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropFilter-op70 | |||
| Conv2DBackpropFilter-op60 Conv2DBackpropFilter 0.01194 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Conv2DBackpropFilter-op60 | |||
| Conv2DBackpropInput-op79 Conv2DBackpropInput 0.03911 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Conv2DBackpropInput-op79 | |||
| Conv2DBackpropInput-op73 Conv2DBackpropInput 0.02185 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropInput-op73 | |||
| Conv2DBackpropInput-op68 Conv2DBackpropInput 0.01392 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropInput-op68 | |||
| Conv2DBackpropInput-op63 Conv2DBackpropInput 0.01106 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Conv2DBackpropInput-op63 | |||
| ApplyMomentum-op54 ApplyMomentum 0.78189 Default Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op54 | |||
| ApplyMomentum-op46 ApplyMomentum 0.34771 Default Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op46 | |||
| ApplyMomentum-op66 ApplyMomentum 0.0318 Default Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op66 | |||
| ApplyMomentum-op61 ApplyMomentum 0.02337 Default Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op61 | |||
| ApplyMomentum-op71 ApplyMomentum 0.02209 Default Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op71 | |||
| ApplyMomentum-op77 ApplyMomentum 0.01652 Default Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op77 | |||
| ApplyMomentum-op83 ApplyMomentum 0.00769 Default Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op83 | |||
| ApplyMomentum-op38 ApplyMomentum 0.00303 Default Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op38 | |||
| ApplyMomentum-op43 ApplyMomentum 0.0028 Default Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op43 | |||
| ApplyMomentum-op51 ApplyMomentum 0.00276 Default Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op51 | |||
| ApplyMomentum-op35 ApplyMomentum 0.00162 Default Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op35 | |||
| @@ -0,0 +1,108 @@ | |||
| op_name, stream_id, start_time(ms), duration(ms) | |||
| Default/AssignAdd-op142,519,154907895.95956,0.0031 | |||
| Default/TransData-op118,519,154907895.96517,0.04664 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/OneHot-op3,519,154907896.64191,0.00176 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/learning_rate-_IteratorLearningRate/GatherV2-op32,519,154907896.64377,0.00153 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/AssignAdd-op31,519,154907896.6454,0.00125 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op91,519,154907896.64675,0.00804 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op110,519,154907896.6549,0.00932 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op111,519,154907896.66432,0.00773 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Cast-op115,519,154907896.67215,0.00696 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Cast-op116,519,154907896.67921,0.00781 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op117,519,154907896.68712,0.00514 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Conv2D-op5,519,154907896.69236,0.06913 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op108,519,154907896.76159,0.00652 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op119,519,154907896.76821,0.0094 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op98,519,154907896.77771,0.00588 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op7,519,154907896.7837,0.00591 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Conv2D-op8,519,154907896.78971,0.02412 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Cast-op109,519,154907896.81393,0.00515 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op120,519,154907896.81919,0.0067 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op99,519,154907896.826,0.00559 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op10,519,154907896.83169,0.00335 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Conv2D-op11,519,154907896.83514,0.16997 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Cast-op106,519,154907897.00521,0.00419 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op121,519,154907897.0095,0.00624 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op95,519,154907897.01584,0.0047 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Conv2D-op13,519,154907897.02064,0.09617 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op107,519,154907897.11691,0.00372 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op122,519,154907897.12073,0.00626 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op97,519,154907897.12709,0.00435 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Conv2D-op15,519,154907897.13154,0.10168 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op114,519,154907897.23332,0.00465 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op123,519,154907897.23808,0.00468 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op112,519,154907897.24286,0.00376 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op17,519,154907897.24672,0.00297 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op105,519,154907897.24979,0.00399 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/TransData-op124,519,154907897.25388,0.08231 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op19,519,154907897.33629,9.17408 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLU-op21,519,154907906.51047,0.00256 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op22,519,154907906.51313,4.04837 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLU-op24,519,154907910.56161,0.00221 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op25,519,154907910.56392,0.00348 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/SoftmaxCrossEntropyWithLogits-op27,519,154907910.5675,0.00364 | |||
| Default/AtomicAddrClean-op145,519,154907910.57125,0.00128 | |||
| Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/ReduceMean-op87,519,154907910.57263,0.00139 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/gradSoftmaxCrossEntropyWithLogits/Mul-op29,519,154907910.57413,0.00132 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op37,519,154907910.57556,0.00278 | |||
| Default/AtomicAddrClean-op146,519,154907910.57845,0.00113 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op30,519,154907910.57968,0.00139 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op40,519,154907910.58117,0.00247 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGrad-op41,519,154907910.58374,0.00426 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op45,519,154907910.5881,0.22636 | |||
| Default/AtomicAddrClean-op147,519,154907910.81456,0.00143 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op42,519,154907910.81609,0.00182 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op48,519,154907910.81802,2.61685 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGrad-op49,519,154907913.43498,0.00424 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op53,519,154907913.43932,0.33999 | |||
| Default/AtomicAddrClean-op148,519,154907913.77941,0.00144 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op50,519,154907913.78096,0.00183 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op56,519,154907913.78289,4.24336 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/flatten-Flatten/gradReshape/TransData-op125,519,154907918.02635,0.06442 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op113,519,154907918.09087,0.00313 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op58,519,154907918.09411,0.00567 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op104,519,154907918.09989,0.0042 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op126,519,154907918.10419,0.00532 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Cast-op96,519,154907918.10962,0.00377 | |||
| Default/AtomicAddrClean-op149,519,154907918.11349,0.00546 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Conv2DBackpropFilter-op60,519,154907918.11906,0.01194 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Conv2DBackpropInput-op63,519,154907918.13111,0.01106 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Cast-op103,519,154907918.14227,0.00397 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op127,519,154907918.14634,0.00526 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op94,519,154907918.1517,0.0045 | |||
| Default/AtomicAddrClean-op150,519,154907918.1563,0.00615 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropFilter-op65,519,154907918.16255,0.01301 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropInput-op68,519,154907918.17566,0.01392 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op102,519,154907918.18968,0.00387 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op128,519,154907918.19365,0.005 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op93,519,154907918.19875,0.00438 | |||
| Default/AtomicAddrClean-op151,519,154907918.20323,0.00506 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropFilter-op70,519,154907918.20839,0.01246 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropInput-op73,519,154907918.22095,0.02185 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op74,519,154907918.24291,0.01593 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op101,519,154907918.25894,0.00524 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op129,519,154907918.26428,0.00653 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Cast-op92,519,154907918.27091,0.00546 | |||
| Default/AtomicAddrClean-op152,519,154907918.27647,0.00523 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Conv2DBackpropFilter-op76,519,154907918.2818,0.02361 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Conv2DBackpropInput-op79,519,154907918.30551,0.03911 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op80,519,154907918.34472,0.03258 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op100,519,154907918.37741,0.00633 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op130,519,154907918.38384,0.00868 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/gradConv2D/Cast-op90,519,154907918.39263,0.00574 | |||
| Default/AtomicAddrClean-op153,519,154907918.39847,0.00294 | |||
| Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/gradConv2D/Conv2DBackpropFilter-op82,519,154907918.40151,0.04572 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op38,519,154907918.44733,0.00303 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op35,519,154907918.45046,0.00162 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op46,519,154907918.45219,0.34771 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op43,519,154907918.8,0.0028 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op54,519,154907918.80291,0.78189 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op51,519,154907919.5849,0.00276 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op61,519,154907919.58776,0.02337 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op66,519,154907919.61123,0.0318 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op71,519,154907919.64313,0.02209 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op77,519,154907919.66532,0.01652 | |||
| Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op83,519,154907919.68194,0.00769 | |||
| Default/AssignAdd-op138,519,154907919.68973,0.00148 | |||
| Default/AssignAdd-op142,519,154907919.98449,0.00128 | |||
| Default/TransData-op118,519,154907919.98694,0.04743 | |||
| @@ -0,0 +1 @@ | |||
| {"op_info":[{"metrics":{"output_queue":{"length":128,"size":[0,0],"throughput":[0.0,2.5845222880636986e-08]}},"num_workers":8,"op_id":3,"op_type":"ImageFolderOp"},{"children":[3],"metrics":{"output_queue":{"length":128,"size":[0,0],"throughput":[0.0,2.5845222880636986e-08]}},"num_workers":8,"op_id":2,"op_type":"MapOp"},{"children":[2],"metrics":{"output_queue":{"length":128,"size":[0,0],"throughput":[0.0,2.5845222880636986e-08]}},"num_workers":8,"op_id":1,"op_type":"MapOp"},{"children":[1],"metrics":{"output_queue":{"length":64,"size":[0,2],"throughput":[0.0,6.461305720159247e-09]}},"num_workers":4,"op_id":0,"op_type":"BatchOp"},{"children":[0],"metrics":null,"num_workers":1,"op_id":4,"op_type":"EpochCtrlOp"}],"sampling_interval":10} | |||
| @@ -0,0 +1 @@ | |||
| {"fp_start": "Default/EndOfSequence-op131", "bp_end": "Default/AssignAdd-op138"} | |||
| @@ -0,0 +1,3 @@ | |||
| step_num,start_point,end_point,total,fp_point,bp_point,iteration_interval,fp_and_bp,tail | |||
| 1,15490789606875,15490791977780,2370905,15490789606875,15490791973683,0,2366808,4097 | |||
| 0,0,0,0,0,0,0,0,0 | |||