From 6e3ae86786382453fa4f4118f32e7fe955fc1af8 Mon Sep 17 00:00:00 2001 From: zhangyihui Date: Wed, 23 Sep 2020 21:19:07 +0800 Subject: [PATCH] add mindinsight st examples --- tests/st/func/profiler/conftest.py | 7 + .../st/func/profiler/test_minddata_analyse.py | 112 ++++++++ .../func/profiler/test_proposer_analyser.py | 63 ++++ tests/ut/profiler/__init__.py | 1 + .../analyser/test_minddata_analyse.py | 57 ++++ .../profiler/aicore_intermediate_1_detail.csv | 106 +++++++ .../profiler/aicore_intermediate_1_type.csv | 22 ++ .../profiler/aicpu_intermediate_1.csv | 6 + .../profiler/ascend_timeline_display_1.json | 1 + .../profiler/ascend_timeline_summary_1.json | 1 + .../profiler/dataset_iterator_profiling_1.txt | 1 + .../profiler/device_queue_profiling_1.txt | 4 + .../normal_run/profiler/framework_raw_1.csv | 106 +++++++ .../normal_run/profiler/minddata_aicpu_1.txt | 3 + .../profiler/minddata_pipeline_raw_1.csv | 5 + .../output_data_preprocess_aicpu_1.txt | 7 + .../profiler/output_format_data_hwts_1.txt | 271 ++++++++++++++++++ .../profiler/output_op_compute_time_1.txt | 109 +++++++ .../output_op_compute_time_detail_1.txt | 131 +++++++++ .../profiler/output_timeline_data_1.txt | 108 +++++++ .../profiler/pipeline_profiling_1.json | 1 + .../profiler/step_trace_point_info.json | 1 + .../profiler/step_trace_raw_1_detail_time.csv | 3 + 23 files changed, 1126 insertions(+) create mode 100644 tests/st/func/profiler/test_minddata_analyse.py create mode 100644 tests/st/func/profiler/test_proposer_analyser.py create mode 100644 tests/ut/profiler/analyser/test_minddata_analyse.py create mode 100644 tests/utils/resource/run_2/normal_run/profiler/aicore_intermediate_1_detail.csv create mode 100644 tests/utils/resource/run_2/normal_run/profiler/aicore_intermediate_1_type.csv create mode 100644 tests/utils/resource/run_2/normal_run/profiler/aicpu_intermediate_1.csv create mode 100644 tests/utils/resource/run_2/normal_run/profiler/ascend_timeline_display_1.json create mode 100644 tests/utils/resource/run_2/normal_run/profiler/ascend_timeline_summary_1.json create mode 100644 tests/utils/resource/run_2/normal_run/profiler/dataset_iterator_profiling_1.txt create mode 100644 tests/utils/resource/run_2/normal_run/profiler/device_queue_profiling_1.txt create mode 100644 tests/utils/resource/run_2/normal_run/profiler/framework_raw_1.csv create mode 100644 tests/utils/resource/run_2/normal_run/profiler/minddata_aicpu_1.txt create mode 100644 tests/utils/resource/run_2/normal_run/profiler/minddata_pipeline_raw_1.csv create mode 100644 tests/utils/resource/run_2/normal_run/profiler/output_data_preprocess_aicpu_1.txt create mode 100644 tests/utils/resource/run_2/normal_run/profiler/output_format_data_hwts_1.txt create mode 100644 tests/utils/resource/run_2/normal_run/profiler/output_op_compute_time_1.txt create mode 100644 tests/utils/resource/run_2/normal_run/profiler/output_op_compute_time_detail_1.txt create mode 100644 tests/utils/resource/run_2/normal_run/profiler/output_timeline_data_1.txt create mode 100644 tests/utils/resource/run_2/normal_run/profiler/pipeline_profiling_1.json create mode 100644 tests/utils/resource/run_2/normal_run/profiler/step_trace_point_info.json create mode 100644 tests/utils/resource/run_2/normal_run/profiler/step_trace_raw_1_detail_time.csv diff --git a/tests/st/func/profiler/conftest.py b/tests/st/func/profiler/conftest.py index 73463805..f9afb763 100644 --- a/tests/st/func/profiler/conftest.py +++ b/tests/st/func/profiler/conftest.py @@ -23,3 +23,10 @@ from tests.utils import mindspore sys.modules['mindspore'] = mindspore BASE_SUMMARY_DIR = os.path.realpath(os.path.join(RAW_DATA_BASE, "run_1")) +# Notice: +# 1. Run_2 is new performance data. +# 2. The names of some files have been changed. \ +# For example, timeline_display_1.json becomes ascend_timeline_display_1.json. +# 3. Some new files have been added. For example, aicpu_intermediate_1.csv. +# 4. It is recommended that the new mindinsight st ut test be based on this version of the performance file. +BASE_SUMMARY_DIR_RUN_2 = os.path.realpath(os.path.join(RAW_DATA_BASE, "run_2")) diff --git a/tests/st/func/profiler/test_minddata_analyse.py b/tests/st/func/profiler/test_minddata_analyse.py new file mode 100644 index 00000000..d33ac70c --- /dev/null +++ b/tests/st/func/profiler/test_minddata_analyse.py @@ -0,0 +1,112 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +""" +Fuction: + Test profiler to watch the performance of training. +Usage: + pytest tests/st/func/profiler +""" +import os +import pytest + +from mindinsight.profiler.analyser.minddata_analyser import MinddataAnalyser +from mindinsight.profiler.analyser.analyser_factory import AnalyserFactory + +from .conftest import BASE_SUMMARY_DIR_RUN_2 + + +class TestMinddataAnalyser: + """Test minddata analyser module.""" + + @classmethod + def setup_class(cls): + """Generate parsed files.""" + cls.summary_dir = os.path.join(BASE_SUMMARY_DIR_RUN_2, 'normal_run') + cls.profiler = os.path.join(cls.summary_dir, 'profiler') + + def setup_method(self): + """Create analyser.""" + self._analyser = AnalyserFactory.instance().get_analyser( + 'minddata', self.profiler, '1') + + @pytest.mark.level0 + @pytest.mark.env_single + @pytest.mark.platform_x86_cpu + @pytest.mark.platform_arm_ascend_training + @pytest.mark.platform_x86_gpu_training + @pytest.mark.platform_x86_ascend_training + def test_analyse_queue_summary(self): + """Test analysing the queue summary info.""" + expect_result = { + "data_process": {"status": "normal"}, + "device_queue_info": {"summary": {"empty_batch_count": 1, "full_batch_count": 0, "total_batch": 1}}, + "device_queue_op": {"status": "normal"}, + "get_next": {"status": "normal"}, + "get_next_queue_info": {"summary": {"empty_batch_count": 0, "total_batch": 3}}, + "tdt": {"status": "normal"} + } + + get_next_queue_info, _ = self._analyser.analyse_get_next_info(info_type="queue") + device_queue_info, _ = self._analyser.analyse_device_queue_info(info_type="queue") + result = MinddataAnalyser.analyse_queue_summary(get_next_queue_info, device_queue_info) + assert expect_result == result + + @pytest.mark.level0 + @pytest.mark.env_single + @pytest.mark.platform_x86_cpu + @pytest.mark.platform_arm_ascend_training + @pytest.mark.platform_x86_gpu_training + @pytest.mark.platform_x86_ascend_training + def test_analyse_get_next_info(self): + """Test analysing the get_next operation info for info_type="time" """ + expect_result = { + "info": {"get_next": [0.001, 0, 0.001]}, + "size": 3, + "summary": {"time_summary": {"avg_cost": "0.0006666666666666666"}} + } + + time_info = { + "size": 0, + "info": [], + "summary": {"time_summary": {}}, + "advise": {} + } + + _, time_info = self._analyser.analyse_get_next_info(info_type="time") + assert expect_result == time_info + + @pytest.mark.level0 + @pytest.mark.env_single + @pytest.mark.platform_x86_cpu + @pytest.mark.platform_arm_ascend_training + @pytest.mark.platform_x86_gpu_training + @pytest.mark.platform_x86_ascend_training + def test_analyse_device_queue_info(self): + """Test analysing the device_queue operation info for info_type="time" """ + expect_result = { + "info": {"total_cost": [4], "push_cost": [4], "get_cost": [0]}, + "size": 1, + "summary": {"time_summary": {"avg_cost": 4, "get_cost": 0, "push_cost": 4}} + } + + time_info = { + "size": 0, + "info": [], + "summary": {"time_summary": {}}, + "advise": {} + } + + _, time_info = self._analyser.analyse_device_queue_info(info_type="time") + assert expect_result == time_info diff --git a/tests/st/func/profiler/test_proposer_analyser.py b/tests/st/func/profiler/test_proposer_analyser.py new file mode 100644 index 00000000..e455f794 --- /dev/null +++ b/tests/st/func/profiler/test_proposer_analyser.py @@ -0,0 +1,63 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +""" +Function: + Test profiler to watch the performance of training. +Usage: + pytest tests/st/func/profiler +""" +import os +import pytest + +from mindinsight.profiler.proposer.compose_proposer import ComposeProposal + +from .conftest import BASE_SUMMARY_DIR_RUN_2 + + +class TestProposerAnalyser: + """Test minddata analyser module.""" + + @classmethod + def setup_class(cls): + """Generate parsed files.""" + cls.summary_dir = os.path.join(BASE_SUMMARY_DIR_RUN_2, 'normal_run') + cls.profiler = os.path.join(cls.summary_dir, 'profiler') + + @pytest.mark.level0 + @pytest.mark.env_single + @pytest.mark.platform_x86_cpu + @pytest.mark.platform_arm_ascend_training + @pytest.mark.platform_x86_gpu_training + @pytest.mark.platform_x86_ascend_training + def test_analyser_proposal(self): + """Test the function of querying the proposals from multiple different proposers""" + expect_result = { + "minddata_device_queue": [1, 1, 0, 1], + "minddata_get_next_queue": [0, 3], + "minddata_pipeline-dataset_op": ["ImageFolderOp_3"], + "minddata_pipeline-general": ["ImageFolderOp_3"] + } + + step_trace_condition = {"filter_condition": {"mode": "proc", + "proc_name": "iteration_interval", + "step_id": 0}} + options = {'step_trace': {"iter_interval": step_trace_condition}} + proposal_type_list = ['step_trace', 'minddata', 'minddata_pipeline', 'common'] + proposal_obj = ComposeProposal(self.profiler, '1', proposal_type_list) + proposal_info = proposal_obj.get_proposal(options) + assert expect_result["minddata_device_queue"] == proposal_info["minddata_device_queue"] + assert expect_result["minddata_get_next_queue"] == proposal_info["minddata_get_next_queue"] + assert expect_result["minddata_pipeline-dataset_op"] == proposal_info["minddata_pipeline-dataset_op"] + assert expect_result["minddata_pipeline-general"] == proposal_info["minddata_pipeline-general"] diff --git a/tests/ut/profiler/__init__.py b/tests/ut/profiler/__init__.py index b85f25fd..d0131a4e 100644 --- a/tests/ut/profiler/__init__.py +++ b/tests/ut/profiler/__init__.py @@ -19,3 +19,4 @@ RAW_DATA_BASE = os.path.realpath(os.path.join(os.path.dirname(__file__), '../../ RAW_DATA = os.path.realpath(os.path.join(RAW_DATA_BASE, 'JOB1')) RAW_DATA_JOB2 = os.path.realpath(os.path.join(RAW_DATA_BASE, 'JOB2')) PROFILER_DIR = os.path.realpath(os.path.join(RAW_DATA_BASE, 'profiler')) +BASE_SUMMARY_DIR = os.path.realpath(os.path.join(RAW_DATA_BASE, "run_2")) diff --git a/tests/ut/profiler/analyser/test_minddata_analyse.py b/tests/ut/profiler/analyser/test_minddata_analyse.py new file mode 100644 index 00000000..303492a9 --- /dev/null +++ b/tests/ut/profiler/analyser/test_minddata_analyse.py @@ -0,0 +1,57 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +""" +Function: + Test profiler to watch the performance of training. +Usage: + pytest tests/ut/profiler +""" +import os +from unittest import TestCase + +from mindinsight.profiler.analyser.analyser_factory import AnalyserFactory + +from ...profiler import BASE_SUMMARY_DIR + + +class TestMinddataAnalyser(TestCase): + """Test minddata analyser module.""" + + def setUp(self) -> None: + """Initialization before test case execution.""" + self.summary_dir = os.path.join(BASE_SUMMARY_DIR, "normal_run") + self.profiler = os.path.join(self.summary_dir, "profiler") + self._analyser = AnalyserFactory.instance().get_analyser( + 'minddata', self.profiler, '1') + + def test_analyse_get_next_info_queue(self): + """Test analysing the get_next operation info for info_type="queue" """ + expect_result = { + "info": {"queue": [3, 2, 1]}, + "size": 3, + "summary": {"queue_summary": {"empty_queue": 0}} + } + result, _ = self._analyser.analyse_get_next_info(info_type="queue") + self.assertDictEqual(expect_result, result) + + def test_analyse_device_queue_info_queue(self): + """Test analysing the device_queue operation info for info_type="queue" """ + expect_result = { + "info": {"queue": [0]}, + "size": 1, + "summary": {"queue_summary": {"empty_queue": 1, "full_queue": 0}} + } + result, _ = self._analyser.analyse_device_queue_info(info_type="queue") + self.assertDictEqual(expect_result, result) diff --git a/tests/utils/resource/run_2/normal_run/profiler/aicore_intermediate_1_detail.csv b/tests/utils/resource/run_2/normal_run/profiler/aicore_intermediate_1_detail.csv new file mode 100644 index 00000000..5065d451 --- /dev/null +++ b/tests/utils/resource/run_2/normal_run/profiler/aicore_intermediate_1_detail.csv @@ -0,0 +1,106 @@ +full_op_name,execution_time +Default/AssignAdd-op142,0.00219 +Default/TransData-op118,0.047035 +Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/OneHot-op3,0.00176 +Default/network-TrainOneStepCell/optimizer-Momentum/learning_rate-_IteratorLearningRate/GatherV2-op32,0.00153 +Default/network-TrainOneStepCell/optimizer-Momentum/AssignAdd-op31,0.00125 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op91,0.00804 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op110,0.00932 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op111,0.00773 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Cast-op115,0.00696 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Cast-op116,0.00781 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op117,0.00514 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Conv2D-op5,0.06913 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op108,0.00652 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op119,0.0094 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op98,0.00588 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op7,0.00591 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Conv2D-op8,0.02412 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Cast-op109,0.00515 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op120,0.0067 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op99,0.00559 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op10,0.00335 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Conv2D-op11,0.16997 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Cast-op106,0.00419 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op121,0.00624 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op95,0.0047 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Conv2D-op13,0.09617 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op107,0.00372 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op122,0.00626 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op97,0.00435 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Conv2D-op15,0.10168 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op114,0.00465 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op123,0.00468 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op112,0.00376 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op17,0.00297 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op105,0.00399 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/TransData-op124,0.08231 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op19,9.17408 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLU-op21,0.00256 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op22,4.04837 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLU-op24,0.00221 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op25,0.00348 +Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/SoftmaxCrossEntropyWithLogits-op27,0.00364 +Default/AtomicAddrClean-op145,0.00128 +Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/ReduceMean-op87,0.00139 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/gradSoftmaxCrossEntropyWithLogits/Mul-op29,0.00132 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op37,0.00278 +Default/AtomicAddrClean-op146,0.00113 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op30,0.00139 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op40,0.00247 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGrad-op41,0.00426 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op45,0.22636 +Default/AtomicAddrClean-op147,0.00143 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op42,0.00182 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op48,2.61685 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGrad-op49,0.00424 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op53,0.33999 +Default/AtomicAddrClean-op148,0.00144 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op50,0.00183 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op56,4.24336 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/flatten-Flatten/gradReshape/TransData-op125,0.06442 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op113,0.00313 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op58,0.00567 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op104,0.0042 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op126,0.00532 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Cast-op96,0.00377 +Default/AtomicAddrClean-op149,0.00546 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Conv2DBackpropFilter-op60,0.01194 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Conv2DBackpropInput-op63,0.01106 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Cast-op103,0.00397 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op127,0.00526 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op94,0.0045 +Default/AtomicAddrClean-op150,0.00615 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropFilter-op65,0.01301 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropInput-op68,0.01392 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op102,0.00387 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op128,0.005 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op93,0.00438 +Default/AtomicAddrClean-op151,0.00506 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropFilter-op70,0.01246 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropInput-op73,0.02185 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op74,0.01593 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op101,0.00524 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op129,0.00653 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Cast-op92,0.00546 +Default/AtomicAddrClean-op152,0.00523 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Conv2DBackpropFilter-op76,0.02361 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Conv2DBackpropInput-op79,0.03911 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op80,0.03258 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op100,0.00633 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op130,0.00868 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/gradConv2D/Cast-op90,0.00574 +Default/AtomicAddrClean-op153,0.00294 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/gradConv2D/Conv2DBackpropFilter-op82,0.04572 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op38,0.00303 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op35,0.00162 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op46,0.34771 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op43,0.0028 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op54,0.78189 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op51,0.00276 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op61,0.02337 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op66,0.0318 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op71,0.02209 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op77,0.01652 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op83,0.00769 +Default/AssignAdd-op138,0.00148 diff --git a/tests/utils/resource/run_2/normal_run/profiler/aicore_intermediate_1_type.csv b/tests/utils/resource/run_2/normal_run/profiler/aicore_intermediate_1_type.csv new file mode 100644 index 00000000..b3b0ef90 --- /dev/null +++ b/tests/utils/resource/run_2/normal_run/profiler/aicore_intermediate_1_type.csv @@ -0,0 +1,22 @@ +op_type,execution_time,execution_frequency,percent +AssignAdd,0.00492,3,0.02 +TransData,0.193765,3,0.84 +OneHot,0.00176,1,0.01 +GatherV2,0.00153,1,0.01 +Cast,0.14809,28,0.64 +Conv2D,0.46107,5,2.00 +ReLUV2,0.03328,5,0.14 +MaxPool,0.01223,3,0.05 +MatMul,20.65774,9,89.47 +ReLU,0.00477,2,0.02 +SoftmaxCrossEntropyWithLogits,0.00364,1,0.02 +AtomicAddrClean,0.03012,9,0.13 +ReduceMean,0.00139,1,0.01 +Mul,0.00132,1,0.01 +BiasAddGrad,0.00504,3,0.02 +ReluGrad,0.00850,2,0.04 +MaxPoolGrad,0.05418,3,0.23 +ReluGradV2,0.03079,5,0.13 +Conv2DBackpropFilter,0.10674,5,0.46 +Conv2DBackpropInput,0.08594,4,0.37 +ApplyMomentum,1.24128,11,5.38 diff --git a/tests/utils/resource/run_2/normal_run/profiler/aicpu_intermediate_1.csv b/tests/utils/resource/run_2/normal_run/profiler/aicpu_intermediate_1.csv new file mode 100644 index 00000000..a9512018 --- /dev/null +++ b/tests/utils/resource/run_2/normal_run/profiler/aicpu_intermediate_1.csv @@ -0,0 +1,6 @@ +serial_number,op_type,total_time,dispatch_time,run_start,run_end +1,InitData,7.906,0.15,154901853050,154901853210 +2,GetNext,0.888,0.132,154907895189,154907895707 +3,EndOfSequence,0.282,0.078,154907896287,154907896335 +4,GetNext,0.293,0.073,154907896880,154907896958 +5,EndOfSequence,0.325,0.091,154907920308,154907920348 diff --git a/tests/utils/resource/run_2/normal_run/profiler/ascend_timeline_display_1.json b/tests/utils/resource/run_2/normal_run/profiler/ascend_timeline_display_1.json new file mode 100644 index 00000000..e919eab2 --- /dev/null +++ b/tests/utils/resource/run_2/normal_run/profiler/ascend_timeline_display_1.json @@ -0,0 +1 @@ +[{"name": "InitData", "ph": "X", "tid": "0", "ts": 0.0, "dur": 159.9999964237213, "pid": 9000},{"name": "GetNext", "ph": "X", "tid": "0", "ts": 6042138.9999985695, "dur": 517.9999768733978, "pid": 9000},{"name": "AssignAdd-op142", "ph": "X", "tid": "519", "ts": 6042909.559994936, "dur": 3.1, "pid": 1, "args": {"type": "AssignAdd", "fullname": "Default/AssignAdd-op142", "input_0": {"format": "DefaultFormat", "data_type": "NUMBER_TYPE_UINT8", "shape": "1"}, "input_1": {"format": "DefaultFormat", "data_type": "NUMBER_TYPE_UINT8", "shape": "1"}, "output_0": {"format": "DefaultFormat", "data_type": "NUMBER_TYPE_UINT8", "shape": "1"}}},{"name": "TransData-op118", "ph": "X", "tid": "519", "ts": 6042915.169984102, "dur": 46.64, "pid": 1, "args": {"type": "TransData", "fullname": "Default/TransData-op118", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,3,227,227"}, "output_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,1,227,227,16"}}},{"name": "EndOfSequence", "ph": "X", "tid": "0", "ts": 6043236.999988556, "dur": 48.00000786781311, "pid": 9000},{"name": "OneHot-op3", "ph": "X", "tid": "519", "ts": 6043591.909974813, "dur": 1.76, "pid": 1, "args": {"type": "OneHot", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/OneHot-op3", "input_0": {"format": "DefaultFormat", "data_type": "NUMBER_TYPE_UINT8", "shape": "2"}, "input_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": ""}, "input_2": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": ""}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,2"}}},{"name": "GatherV2-op32", "ph": "X", "tid": "519", "ts": 6043593.769997358, "dur": 1.5299999999999998, "pid": 1, "args": {"type": "GatherV2", "fullname": "Default/network-TrainOneStepCell/optimizer-Momentum/learning_rate-_IteratorLearningRate/GatherV2-op32", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "1"}, "input_1": {"format": "DefaultFormat", "data_type": "NUMBER_TYPE_UINT8", "shape": "1"}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "1"}}},{"name": "AssignAdd-op31", "ph": "X", "tid": "519", "ts": 6043595.399975777, "dur": 1.25, "pid": 1, "args": {"type": "AssignAdd", "fullname": "Default/network-TrainOneStepCell/optimizer-Momentum/AssignAdd-op31", "input_0": {"format": "DefaultFormat", "data_type": "NUMBER_TYPE_UINT8", "shape": "1"}, "input_1": {"format": "DefaultFormat", "data_type": "NUMBER_TYPE_UINT8", "shape": ""}, "output_0": {"format": "DefaultFormat", "data_type": "NUMBER_TYPE_UINT8", "shape": ""}}},{"name": "Cast-op91", "ph": "X", "tid": "519", "ts": 6043596.7499911785, "dur": 8.040000000000001, "pid": 1, "args": {"type": "Cast", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op91", "input_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,1,227,227,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,1,227,227,16"}}},{"name": "Cast-op110", "ph": "X", "tid": "519", "ts": 6043604.90000248, "dur": 9.32, "pid": 1, "args": {"type": "Cast", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op110", "input_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "216,24,16,16"}, "output_0": {"format": "FracZ", "data_type": "NUMBER_TYPE_END", "shape": "216,24,16,16"}}},{"name": "Cast-op111", "ph": "X", "tid": "519", "ts": 6043614.3199801445, "dur": 7.7299999999999995, "pid": 1, "args": {"type": "Cast", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op111", "input_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "216,16,16,16"}, "output_0": {"format": "FracZ", "data_type": "NUMBER_TYPE_END", "shape": "216,16,16,16"}}},{"name": "Cast-op115", "ph": "X", "tid": "519", "ts": 6043622.149974108, "dur": 6.96, "pid": 1, "args": {"type": "Cast", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Cast-op115", "input_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "150,16,16,16"}, "output_0": {"format": "FracZ", "data_type": "NUMBER_TYPE_END", "shape": "150,16,16,16"}}},{"name": "Cast-op116", "ph": "X", "tid": "519", "ts": 6043629.20999527, "dur": 7.8100000000000005, "pid": 1, "args": {"type": "Cast", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Cast-op116", "input_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "144,24,16,16"}, "output_0": {"format": "FracZ", "data_type": "NUMBER_TYPE_END", "shape": "144,24,16,16"}}},{"name": "Cast-op117", "ph": "X", "tid": "519", "ts": 6043637.119978666, "dur": 5.14, "pid": 1, "args": {"type": "Cast", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op117", "input_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "121,6,16,16"}, "output_0": {"format": "FracZ", "data_type": "NUMBER_TYPE_END", "shape": "121,6,16,16"}}},{"name": "Conv2D-op5", "ph": "X", "tid": "519", "ts": 6043642.360001802, "dur": 69.13, "pid": 1, "args": {"type": "Conv2D", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Conv2D-op5", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,1,227,227,16"}, "input_1": {"format": "FracZ", "data_type": "NUMBER_TYPE_END", "shape": "121,6,16,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,6,55,55,16"}}},{"name": "Cast-op108", "ph": "X", "tid": "519", "ts": 6043711.589992046, "dur": 6.52, "pid": 1, "args": {"type": "Cast", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op108", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,6,55,55,16"}, "output_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,6,55,55,16"}}},{"name": "ReLUV2-op119", "ph": "X", "tid": "519", "ts": 6043718.209981918, "dur": 9.4, "pid": 1, "args": {"type": "ReLUV2", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op119", "input_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,6,55,55,16"}, "output_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,6,55,55,16"}, "output_1": {"format": "DefaultFormat", "data_type": "NUMBER_TYPE_UINT64", "shape": "2,6,55,55,2"}}},{"name": "Cast-op98", "ph": "X", "tid": "519", "ts": 6043727.709978819, "dur": 5.88, "pid": 1, "args": {"type": "Cast", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op98", "input_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,6,55,55,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,6,55,55,16"}}},{"name": "MaxPool-op7", "ph": "X", "tid": "519", "ts": 6043733.699977398, "dur": 5.91, "pid": 1, "args": {"type": "MaxPool", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op7", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,6,55,55,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,6,27,27,16"}}},{"name": "Conv2D-op8", "ph": "X", "tid": "519", "ts": 6043739.709973335, "dur": 24.119999999999997, "pid": 1, "args": {"type": "Conv2D", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Conv2D-op8", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,6,27,27,16"}, "input_1": {"format": "FracZ", "data_type": "NUMBER_TYPE_END", "shape": "150,16,16,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,27,27,16"}}},{"name": "Cast-op109", "ph": "X", "tid": "519", "ts": 6043763.929992914, "dur": 5.15, "pid": 1, "args": {"type": "Cast", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Cast-op109", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,27,27,16"}, "output_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,16,27,27,16"}}},{"name": "ReLUV2-op120", "ph": "X", "tid": "519", "ts": 6043769.189983606, "dur": 6.7, "pid": 1, "args": {"type": "ReLUV2", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op120", "input_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,16,27,27,16"}, "output_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,16,27,27,16"}, "output_1": {"format": "DefaultFormat", "data_type": "NUMBER_TYPE_UINT64", "shape": "2,16,27,27,2"}}},{"name": "Cast-op99", "ph": "X", "tid": "519", "ts": 6043775.999993086, "dur": 5.590000000000001, "pid": 1, "args": {"type": "Cast", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op99", "input_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,16,27,27,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,27,27,16"}}},{"name": "MaxPool-op10", "ph": "X", "tid": "519", "ts": 6043781.690001488, "dur": 3.35, "pid": 1, "args": {"type": "MaxPool", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op10", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,27,27,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,13,13,16"}}},{"name": "Conv2D-op11", "ph": "X", "tid": "519", "ts": 6043785.139977932, "dur": 169.97, "pid": 1, "args": {"type": "Conv2D", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Conv2D-op11", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,13,13,16"}, "input_1": {"format": "FracZ", "data_type": "NUMBER_TYPE_END", "shape": "144,24,16,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,24,13,13,16"}}},{"name": "GetNext", "ph": "X", "tid": "0", "ts": 6043829.999983311, "dur": 78.000009059906, "pid": 9000},{"name": "Cast-op106", "ph": "X", "tid": "519", "ts": 6043955.210000277, "dur": 4.19, "pid": 1, "args": {"type": "Cast", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Cast-op106", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,24,13,13,16"}, "output_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,24,13,13,16"}}},{"name": "ReLUV2-op121", "ph": "X", "tid": "519", "ts": 6043959.49998498, "dur": 6.24, "pid": 1, "args": {"type": "ReLUV2", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op121", "input_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,24,13,13,16"}, "output_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,24,13,13,16"}, "output_1": {"format": "DefaultFormat", "data_type": "NUMBER_TYPE_UINT64", "shape": "2,24,13,13,2"}}},{"name": "Cast-op95", "ph": "X", "tid": "519", "ts": 6043965.839982033, "dur": 4.7, "pid": 1, "args": {"type": "Cast", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op95", "input_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,24,13,13,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,24,13,13,16"}}},{"name": "Conv2D-op13", "ph": "X", "tid": "519", "ts": 6043970.639973879, "dur": 96.17, "pid": 1, "args": {"type": "Conv2D", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Conv2D-op13", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,24,13,13,16"}, "input_1": {"format": "FracZ", "data_type": "NUMBER_TYPE_END", "shape": "216,24,16,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,24,13,13,16"}}},{"name": "Cast-op107", "ph": "X", "tid": "519", "ts": 6044066.909998655, "dur": 3.72, "pid": 1, "args": {"type": "Cast", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op107", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,24,13,13,16"}, "output_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,24,13,13,16"}}},{"name": "ReLUV2-op122", "ph": "X", "tid": "519", "ts": 6044070.730000734, "dur": 6.26, "pid": 1, "args": {"type": "ReLUV2", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op122", "input_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,24,13,13,16"}, "output_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,24,13,13,16"}, "output_1": {"format": "DefaultFormat", "data_type": "NUMBER_TYPE_UINT64", "shape": "2,24,13,13,2"}}},{"name": "Cast-op97", "ph": "X", "tid": "519", "ts": 6044077.089995146, "dur": 4.35, "pid": 1, "args": {"type": "Cast", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op97", "input_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,24,13,13,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,24,13,13,16"}}},{"name": "Conv2D-op15", "ph": "X", "tid": "519", "ts": 6044081.539988518, "dur": 101.68, "pid": 1, "args": {"type": "Conv2D", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Conv2D-op15", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,24,13,13,16"}, "input_1": {"format": "FracZ", "data_type": "NUMBER_TYPE_END", "shape": "216,16,16,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,13,13,16"}}},{"name": "Cast-op114", "ph": "X", "tid": "519", "ts": 6044183.319985867, "dur": 4.6499999999999995, "pid": 1, "args": {"type": "Cast", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op114", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,13,13,16"}, "output_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,16,13,13,16"}}},{"name": "ReLUV2-op123", "ph": "X", "tid": "519", "ts": 6044188.079982996, "dur": 4.68, "pid": 1, "args": {"type": "ReLUV2", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op123", "input_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,16,13,13,16"}, "output_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,16,13,13,16"}, "output_1": {"format": "DefaultFormat", "data_type": "NUMBER_TYPE_UINT64", "shape": "2,16,13,13,2"}}},{"name": "Cast-op112", "ph": "X", "tid": "519", "ts": 6044192.859977484, "dur": 3.76, "pid": 1, "args": {"type": "Cast", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op112", "input_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,16,13,13,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,13,13,16"}}},{"name": "MaxPool-op17", "ph": "X", "tid": "519", "ts": 6044196.719974279, "dur": 2.97, "pid": 1, "args": {"type": "MaxPool", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op17", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,13,13,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,6,6,16"}}},{"name": "Cast-op105", "ph": "X", "tid": "519", "ts": 6044199.7900009155, "dur": 3.9899999999999998, "pid": 1, "args": {"type": "Cast", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op105", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,6,6,16"}, "output_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,16,6,6,16"}}},{"name": "TransData-op124", "ph": "X", "tid": "519", "ts": 6044203.879982233, "dur": 82.30999999999999, "pid": 1, "args": {"type": "TransData", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/TransData-op124", "input_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,16,6,6,16"}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,256,6,6"}}},{"name": "MatMul-op19", "ph": "X", "tid": "519", "ts": 6044286.289989948, "dur": 9174.08, "pid": 1, "args": {"type": "MatMul", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op19", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,256,6,6"}, "input_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096,9216"}, "input_2": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096"}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}}},{"name": "ReLU-op21", "ph": "X", "tid": "519", "ts": 6053460.469990969, "dur": 2.56, "pid": 1, "args": {"type": "ReLU", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLU-op21", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}}},{"name": "MatMul-op22", "ph": "X", "tid": "519", "ts": 6053463.129997253, "dur": 4048.3700000000003, "pid": 1, "args": {"type": "MatMul", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op22", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}, "input_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096,4096"}, "input_2": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096"}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}}},{"name": "ReLU-op24", "ph": "X", "tid": "519", "ts": 6057511.610001326, "dur": 2.21, "pid": 1, "args": {"type": "ReLU", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLU-op24", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}}},{"name": "MatMul-op25", "ph": "X", "tid": "519", "ts": 6057513.919979334, "dur": 3.48, "pid": 1, "args": {"type": "MatMul", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op25", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}, "input_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}, "input_2": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2"}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,2"}}},{"name": "SoftmaxCrossEntropyWithLogits-op27", "ph": "X", "tid": "519", "ts": 6057517.499983311, "dur": 3.64, "pid": 1, "args": {"type": "SoftmaxCrossEntropyWithLogits", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/SoftmaxCrossEntropyWithLogits-op27", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,2"}, "input_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,2"}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2"}, "output_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,2"}}},{"name": "AtomicAddrClean-op145", "ph": "X", "tid": "519", "ts": 6057521.249979734, "dur": 1.28, "pid": 1, "args": {"type": "AtomicAddrClean", "fullname": "Default/AtomicAddrClean-op145", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": ""}}},{"name": "ReduceMean-op87", "ph": "X", "tid": "519", "ts": 6057522.629976273, "dur": 1.39, "pid": 1, "args": {"type": "ReduceMean", "fullname": "Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/ReduceMean-op87", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2"}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": ""}}},{"name": "Mul-op29", "ph": "X", "tid": "519", "ts": 6057524.129986763, "dur": 1.32, "pid": 1, "args": {"type": "Mul", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/gradSoftmaxCrossEntropyWithLogits/Mul-op29", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,2"}, "input_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,1"}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,2"}}},{"name": "MatMul-op37", "ph": "X", "tid": "519", "ts": 6057525.559991598, "dur": 2.78, "pid": 1, "args": {"type": "MatMul", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op37", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,2"}, "input_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}}},{"name": "AtomicAddrClean-op146", "ph": "X", "tid": "519", "ts": 6057528.449982405, "dur": 1.13, "pid": 1, "args": {"type": "AtomicAddrClean", "fullname": "Default/AtomicAddrClean-op146", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2"}}},{"name": "BiasAddGrad-op30", "ph": "X", "tid": "519", "ts": 6057529.679983854, "dur": 1.39, "pid": 1, "args": {"type": "BiasAddGrad", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op30", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,2"}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2"}}},{"name": "MatMul-op40", "ph": "X", "tid": "519", "ts": 6057531.169980764, "dur": 2.4699999999999998, "pid": 1, "args": {"type": "MatMul", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op40", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,2"}, "input_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}}},{"name": "ReluGrad-op41", "ph": "X", "tid": "519", "ts": 6057533.7399840355, "dur": 4.26, "pid": 1, "args": {"type": "ReluGrad", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGrad-op41", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}, "input_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}}},{"name": "MatMul-op45", "ph": "X", "tid": "519", "ts": 6057538.099974394, "dur": 226.36, "pid": 1, "args": {"type": "MatMul", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op45", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}, "input_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096,4096"}}},{"name": "AtomicAddrClean-op147", "ph": "X", "tid": "519", "ts": 6057764.559984207, "dur": 1.4300000000000002, "pid": 1, "args": {"type": "AtomicAddrClean", "fullname": "Default/AtomicAddrClean-op147", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096"}}},{"name": "BiasAddGrad-op42", "ph": "X", "tid": "519", "ts": 6057766.089975834, "dur": 1.82, "pid": 1, "args": {"type": "BiasAddGrad", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op42", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096"}}},{"name": "MatMul-op48", "ph": "X", "tid": "519", "ts": 6057768.019974232, "dur": 2616.85, "pid": 1, "args": {"type": "MatMul", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op48", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}, "input_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096,4096"}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}}},{"name": "ReluGrad-op49", "ph": "X", "tid": "519", "ts": 6060384.979993105, "dur": 4.24, "pid": 1, "args": {"type": "ReluGrad", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGrad-op49", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}, "input_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}}},{"name": "MatMul-op53", "ph": "X", "tid": "519", "ts": 6060389.319986105, "dur": 339.99, "pid": 1, "args": {"type": "MatMul", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op53", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}, "input_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,256,6,6"}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096,9216"}}},{"name": "AtomicAddrClean-op148", "ph": "X", "tid": "519", "ts": 6060729.409992695, "dur": 1.4400000000000002, "pid": 1, "args": {"type": "AtomicAddrClean", "fullname": "Default/AtomicAddrClean-op148", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096"}}},{"name": "BiasAddGrad-op50", "ph": "X", "tid": "519", "ts": 6060730.95998168, "dur": 1.83, "pid": 1, "args": {"type": "BiasAddGrad", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op50", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096"}}},{"name": "MatMul-op56", "ph": "X", "tid": "519", "ts": 6060732.889980078, "dur": 4243.36, "pid": 1, "args": {"type": "MatMul", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op56", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}, "input_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096,9216"}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,9216"}}},{"name": "TransData-op125", "ph": "X", "tid": "519", "ts": 6064976.349979639, "dur": 64.42, "pid": 1, "args": {"type": "TransData", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/flatten-Flatten/gradReshape/TransData-op125", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,9216"}, "output_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,16,6,6,16"}}},{"name": "Cast-op113", "ph": "X", "tid": "519", "ts": 6065040.8699810505, "dur": 3.13, "pid": 1, "args": {"type": "Cast", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op113", "input_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,16,6,6,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,6,6,16"}}},{"name": "MaxPoolGrad-op58", "ph": "X", "tid": "519", "ts": 6065044.1100001335, "dur": 5.67, "pid": 1, "args": {"type": "MaxPoolGrad", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op58", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,13,13,16"}, "input_1": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,6,6,16"}, "input_2": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,6,6,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,13,13,16"}}},{"name": "Cast-op104", "ph": "X", "tid": "519", "ts": 6065049.889981747, "dur": 4.2, "pid": 1, "args": {"type": "Cast", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op104", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,13,13,16"}, "output_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,16,13,13,16"}}},{"name": "ReluGradV2-op126", "ph": "X", "tid": "519", "ts": 6065054.18998003, "dur": 5.32, "pid": 1, "args": {"type": "ReluGradV2", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op126", "input_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,16,13,13,16"}, "input_1": {"format": "DefaultFormat", "data_type": "NUMBER_TYPE_UINT64", "shape": "2,16,13,13,2"}, "output_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,16,13,13,16"}}},{"name": "Cast-op96", "ph": "X", "tid": "519", "ts": 6065059.619992971, "dur": 3.77, "pid": 1, "args": {"type": "Cast", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Cast-op96", "input_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,16,13,13,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,13,13,16"}}},{"name": "AtomicAddrClean-op149", "ph": "X", "tid": "519", "ts": 6065063.489973545, "dur": 5.46, "pid": 1, "args": {"type": "AtomicAddrClean", "fullname": "Default/AtomicAddrClean-op149", "input_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "216,16,16,16"}}},{"name": "Conv2DBackpropFilter-op60", "ph": "X", "tid": "519", "ts": 6065069.059997797, "dur": 11.94, "pid": 1, "args": {"type": "Conv2DBackpropFilter", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Conv2DBackpropFilter-op60", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,13,13,16"}, "input_1": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,24,13,13,16"}, "output_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "216,16,16,16"}}},{"name": "Conv2DBackpropInput-op63", "ph": "X", "tid": "519", "ts": 6065081.11000061, "dur": 11.06, "pid": 1, "args": {"type": "Conv2DBackpropInput", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Conv2DBackpropInput-op63", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,13,13,16"}, "input_1": {"format": "FracZ", "data_type": "NUMBER_TYPE_END", "shape": "216,16,16,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,24,13,13,16"}}},{"name": "Cast-op103", "ph": "X", "tid": "519", "ts": 6065092.269986868, "dur": 3.9699999999999998, "pid": 1, "args": {"type": "Cast", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Cast-op103", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,24,13,13,16"}, "output_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,24,13,13,16"}}},{"name": "ReluGradV2-op127", "ph": "X", "tid": "519", "ts": 6065096.340000629, "dur": 5.26, "pid": 1, "args": {"type": "ReluGradV2", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op127", "input_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,24,13,13,16"}, "input_1": {"format": "DefaultFormat", "data_type": "NUMBER_TYPE_UINT64", "shape": "2,24,13,13,2"}, "output_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,24,13,13,16"}}},{"name": "Cast-op94", "ph": "X", "tid": "519", "ts": 6065101.699978113, "dur": 4.5, "pid": 1, "args": {"type": "Cast", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op94", "input_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,24,13,13,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,24,13,13,16"}}},{"name": "AtomicAddrClean-op150", "ph": "X", "tid": "519", "ts": 6065106.299996376, "dur": 6.15, "pid": 1, "args": {"type": "AtomicAddrClean", "fullname": "Default/AtomicAddrClean-op150", "input_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "216,24,16,16"}}},{"name": "Conv2DBackpropFilter-op65", "ph": "X", "tid": "519", "ts": 6065112.549990416, "dur": 13.010000000000002, "pid": 1, "args": {"type": "Conv2DBackpropFilter", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropFilter-op65", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,24,13,13,16"}, "input_1": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,24,13,13,16"}, "output_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "216,24,16,16"}}},{"name": "Conv2DBackpropInput-op68", "ph": "X", "tid": "519", "ts": 6065125.660002232, "dur": 13.92, "pid": 1, "args": {"type": "Conv2DBackpropInput", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropInput-op68", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,24,13,13,16"}, "input_1": {"format": "FracZ", "data_type": "NUMBER_TYPE_END", "shape": "216,24,16,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,24,13,13,16"}}},{"name": "Cast-op102", "ph": "X", "tid": "519", "ts": 6065139.679998159, "dur": 3.87, "pid": 1, "args": {"type": "Cast", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op102", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,24,13,13,16"}, "output_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,24,13,13,16"}}},{"name": "ReluGradV2-op128", "ph": "X", "tid": "519", "ts": 6065143.649995327, "dur": 5.0, "pid": 1, "args": {"type": "ReluGradV2", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op128", "input_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,24,13,13,16"}, "input_1": {"format": "DefaultFormat", "data_type": "NUMBER_TYPE_UINT64", "shape": "2,24,13,13,2"}, "output_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,24,13,13,16"}}},{"name": "Cast-op93", "ph": "X", "tid": "519", "ts": 6065148.74997735, "dur": 4.38, "pid": 1, "args": {"type": "Cast", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op93", "input_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,24,13,13,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,24,13,13,16"}}},{"name": "AtomicAddrClean-op151", "ph": "X", "tid": "519", "ts": 6065153.229981661, "dur": 5.0600000000000005, "pid": 1, "args": {"type": "AtomicAddrClean", "fullname": "Default/AtomicAddrClean-op151", "input_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "144,24,16,16"}}},{"name": "Conv2DBackpropFilter-op70", "ph": "X", "tid": "519", "ts": 6065158.389985561, "dur": 12.46, "pid": 1, "args": {"type": "Conv2DBackpropFilter", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropFilter-op70", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,24,13,13,16"}, "input_1": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,13,13,16"}, "output_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "144,24,16,16"}}},{"name": "Conv2DBackpropInput-op73", "ph": "X", "tid": "519", "ts": 6065170.949995518, "dur": 21.85, "pid": 1, "args": {"type": "Conv2DBackpropInput", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropInput-op73", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,24,13,13,16"}, "input_1": {"format": "FracZ", "data_type": "NUMBER_TYPE_END", "shape": "144,24,16,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,13,13,16"}}},{"name": "MaxPoolGrad-op74", "ph": "X", "tid": "519", "ts": 6065192.909985781, "dur": 15.93, "pid": 1, "args": {"type": "MaxPoolGrad", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op74", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,27,27,16"}, "input_1": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,13,13,16"}, "input_2": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,13,13,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,27,27,16"}}},{"name": "Cast-op101", "ph": "X", "tid": "519", "ts": 6065208.939999342, "dur": 5.24, "pid": 1, "args": {"type": "Cast", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op101", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,27,27,16"}, "output_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,16,27,27,16"}}},{"name": "ReluGradV2-op129", "ph": "X", "tid": "519", "ts": 6065214.279979467, "dur": 6.53, "pid": 1, "args": {"type": "ReluGradV2", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op129", "input_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,16,27,27,16"}, "input_1": {"format": "DefaultFormat", "data_type": "NUMBER_TYPE_UINT64", "shape": "2,16,27,27,2"}, "output_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,16,27,27,16"}}},{"name": "Cast-op92", "ph": "X", "tid": "519", "ts": 6065220.90998292, "dur": 5.46, "pid": 1, "args": {"type": "Cast", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Cast-op92", "input_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,16,27,27,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,27,27,16"}}},{"name": "AtomicAddrClean-op152", "ph": "X", "tid": "519", "ts": 6065226.469993591, "dur": 5.23, "pid": 1, "args": {"type": "AtomicAddrClean", "fullname": "Default/AtomicAddrClean-op152", "input_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "150,16,16,16"}}},{"name": "Conv2DBackpropFilter-op76", "ph": "X", "tid": "519", "ts": 6065231.799989939, "dur": 23.61, "pid": 1, "args": {"type": "Conv2DBackpropFilter", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Conv2DBackpropFilter-op76", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,27,27,16"}, "input_1": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,6,27,27,16"}, "output_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "150,16,16,16"}}},{"name": "Conv2DBackpropInput-op79", "ph": "X", "tid": "519", "ts": 6065255.510002375, "dur": 39.11, "pid": 1, "args": {"type": "Conv2DBackpropInput", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Conv2DBackpropInput-op79", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,16,27,27,16"}, "input_1": {"format": "FracZ", "data_type": "NUMBER_TYPE_END", "shape": "150,16,16,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,6,27,27,16"}}},{"name": "MaxPoolGrad-op80", "ph": "X", "tid": "519", "ts": 6065294.719994068, "dur": 32.58, "pid": 1, "args": {"type": "MaxPoolGrad", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op80", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,6,55,55,16"}, "input_1": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,6,27,27,16"}, "input_2": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,6,27,27,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,6,55,55,16"}}},{"name": "Cast-op100", "ph": "X", "tid": "519", "ts": 6065327.409982681, "dur": 6.33, "pid": 1, "args": {"type": "Cast", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op100", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,6,55,55,16"}, "output_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,6,55,55,16"}}},{"name": "ReluGradV2-op130", "ph": "X", "tid": "519", "ts": 6065333.839982748, "dur": 8.68, "pid": 1, "args": {"type": "ReluGradV2", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op130", "input_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,6,55,55,16"}, "input_1": {"format": "DefaultFormat", "data_type": "NUMBER_TYPE_UINT64", "shape": "2,6,55,55,2"}, "output_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,6,55,55,16"}}},{"name": "Cast-op90", "ph": "X", "tid": "519", "ts": 6065342.629998922, "dur": 5.74, "pid": 1, "args": {"type": "Cast", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/gradConv2D/Cast-op90", "input_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,6,55,55,16"}, "output_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,6,55,55,16"}}},{"name": "AtomicAddrClean-op153", "ph": "X", "tid": "519", "ts": 6065348.470002413, "dur": 2.94, "pid": 1, "args": {"type": "AtomicAddrClean", "fullname": "Default/AtomicAddrClean-op153", "input_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "121,6,16,16"}}},{"name": "Conv2DBackpropFilter-op82", "ph": "X", "tid": "519", "ts": 6065351.509988308, "dur": 45.72, "pid": 1, "args": {"type": "Conv2DBackpropFilter", "fullname": "Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/gradConv2D/Conv2DBackpropFilter-op82", "input_0": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,6,55,55,16"}, "input_1": {"format": "NC1HWC0", "data_type": "NUMBER_TYPE_END", "shape": "2,1,227,227,16"}, "output_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "121,6,16,16"}}},{"name": "ApplyMomentum-op38", "ph": "X", "tid": "519", "ts": 6065397.329986095, "dur": 3.0300000000000002, "pid": 1, "args": {"type": "ApplyMomentum", "fullname": "Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op38", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}, "input_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}, "input_2": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "1"}, "input_3": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}, "input_4": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": ""}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}, "output_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,4096"}}},{"name": "ApplyMomentum-op35", "ph": "X", "tid": "519", "ts": 6065400.459975004, "dur": 1.6199999999999999, "pid": 1, "args": {"type": "ApplyMomentum", "fullname": "Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op35", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2"}, "input_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2"}, "input_2": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "1"}, "input_3": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2"}, "input_4": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": ""}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2"}, "output_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2"}}},{"name": "ApplyMomentum-op46", "ph": "X", "tid": "519", "ts": 6065402.189999819, "dur": 347.71000000000004, "pid": 1, "args": {"type": "ApplyMomentum", "fullname": "Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op46", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096,4096"}, "input_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096,4096"}, "input_2": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "1"}, "input_3": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096,4096"}, "input_4": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": ""}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096,4096"}, "output_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096,4096"}}},{"name": "ApplyMomentum-op43", "ph": "X", "tid": "519", "ts": 6065750.0, "dur": 2.8, "pid": 1, "args": {"type": "ApplyMomentum", "fullname": "Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op43", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096"}, "input_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096"}, "input_2": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "1"}, "input_3": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096"}, "input_4": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": ""}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096"}, "output_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096"}}},{"name": "ApplyMomentum-op54", "ph": "X", "tid": "519", "ts": 6065752.909988165, "dur": 781.89, "pid": 1, "args": {"type": "ApplyMomentum", "fullname": "Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op54", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096,9216"}, "input_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096,9216"}, "input_2": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "1"}, "input_3": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096,9216"}, "input_4": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": ""}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096,9216"}, "output_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096,9216"}}},{"name": "ApplyMomentum-op51", "ph": "X", "tid": "519", "ts": 6066534.89997983, "dur": 2.76, "pid": 1, "args": {"type": "ApplyMomentum", "fullname": "Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op51", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096"}, "input_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096"}, "input_2": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "1"}, "input_3": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096"}, "input_4": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": ""}, "output_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096"}, "output_1": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "4096"}}},{"name": "ApplyMomentum-op61", "ph": "X", "tid": "519", "ts": 6066537.7599895, "dur": 23.369999999999997, "pid": 1, "args": {"type": "ApplyMomentum", "fullname": "Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op61", "input_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "216,16,16,16"}, "input_1": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "216,16,16,16"}, "input_2": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "1"}, "input_3": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "216,16,16,16"}, "input_4": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": ""}, "output_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "216,16,16,16"}, "output_1": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "216,16,16,16"}}},{"name": "ApplyMomentum-op66", "ph": "X", "tid": "519", "ts": 6066561.229974031, "dur": 31.8, "pid": 1, "args": {"type": "ApplyMomentum", "fullname": "Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op66", "input_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "216,24,16,16"}, "input_1": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "216,24,16,16"}, "input_2": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "1"}, "input_3": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "216,24,16,16"}, "input_4": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": ""}, "output_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "216,24,16,16"}, "output_1": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "216,24,16,16"}}},{"name": "ApplyMomentum-op71", "ph": "X", "tid": "519", "ts": 6066593.129992485, "dur": 22.09, "pid": 1, "args": {"type": "ApplyMomentum", "fullname": "Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op71", "input_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "144,24,16,16"}, "input_1": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "144,24,16,16"}, "input_2": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "1"}, "input_3": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "144,24,16,16"}, "input_4": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": ""}, "output_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "144,24,16,16"}, "output_1": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "144,24,16,16"}}},{"name": "ApplyMomentum-op77", "ph": "X", "tid": "519", "ts": 6066615.319997072, "dur": 16.52, "pid": 1, "args": {"type": "ApplyMomentum", "fullname": "Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op77", "input_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "150,16,16,16"}, "input_1": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "150,16,16,16"}, "input_2": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "1"}, "input_3": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "150,16,16,16"}, "input_4": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": ""}, "output_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "150,16,16,16"}, "output_1": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "150,16,16,16"}}},{"name": "ApplyMomentum-op83", "ph": "X", "tid": "519", "ts": 6066631.939977407, "dur": 7.6899999999999995, "pid": 1, "args": {"type": "ApplyMomentum", "fullname": "Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op83", "input_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "121,6,16,16"}, "input_1": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "121,6,16,16"}, "input_2": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "1"}, "input_3": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "121,6,16,16"}, "input_4": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": ""}, "output_0": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "121,6,16,16"}, "output_1": {"format": "FracZ", "data_type": "UNKNOWN", "shape": "121,6,16,16"}}},{"name": "AssignAdd-op138", "ph": "X", "tid": "519", "ts": 6066639.729976654, "dur": 1.48, "pid": 1, "args": {"type": "AssignAdd", "fullname": "Default/AssignAdd-op138", "input_0": {"format": "DefaultFormat", "data_type": "NUMBER_TYPE_UINT8", "shape": "1"}, "input_1": {"format": "DefaultFormat", "data_type": "NUMBER_TYPE_UINT8", "shape": "1"}, "output_0": {"format": "DefaultFormat", "data_type": "NUMBER_TYPE_UINT8", "shape": "1"}}},{"name": "AssignAdd-op142", "ph": "X", "tid": "519", "ts": 6066934.489995241, "dur": 1.28, "pid": 1, "args": {"type": "AssignAdd", "fullname": "Default/AssignAdd-op142", "input_0": {"format": "DefaultFormat", "data_type": "NUMBER_TYPE_UINT8", "shape": "1"}, "input_1": {"format": "DefaultFormat", "data_type": "NUMBER_TYPE_UINT8", "shape": "1"}, "output_0": {"format": "DefaultFormat", "data_type": "NUMBER_TYPE_UINT8", "shape": "1"}}},{"name": "TransData-op118", "ph": "X", "tid": "519", "ts": 6066936.93998456, "dur": 47.43, "pid": 1, "args": {"type": "TransData", "fullname": "Default/TransData-op118", "input_0": {"format": "DefaultFormat", "data_type": "UNKNOWN", "shape": "2,3,227,227"}, "output_0": {"format": "NC1HWC0", "data_type": "UNKNOWN", "shape": "2,1,227,227,16"}}},{"name": "EndOfSequence", "ph": "X", "tid": "0", "ts": 6067257.99998641, "dur": 39.99999165534973, "pid": 9000}] \ No newline at end of file diff --git a/tests/utils/resource/run_2/normal_run/profiler/ascend_timeline_summary_1.json b/tests/utils/resource/run_2/normal_run/profiler/ascend_timeline_summary_1.json new file mode 100644 index 00000000..256734c2 --- /dev/null +++ b/tests/utils/resource/run_2/normal_run/profiler/ascend_timeline_summary_1.json @@ -0,0 +1 @@ +{"total_time": 23147.013999999992, "num_of_streams": 2, "num_of_ops": 213, "op_exe_times": 112} \ No newline at end of file diff --git a/tests/utils/resource/run_2/normal_run/profiler/dataset_iterator_profiling_1.txt b/tests/utils/resource/run_2/normal_run/profiler/dataset_iterator_profiling_1.txt new file mode 100644 index 00000000..d688c626 --- /dev/null +++ b/tests/utils/resource/run_2/normal_run/profiler/dataset_iterator_profiling_1.txt @@ -0,0 +1 @@ +1 64 1 3 diff --git a/tests/utils/resource/run_2/normal_run/profiler/device_queue_profiling_1.txt b/tests/utils/resource/run_2/normal_run/profiler/device_queue_profiling_1.txt new file mode 100644 index 00000000..dacdeb0d --- /dev/null +++ b/tests/utils/resource/run_2/normal_run/profiler/device_queue_profiling_1.txt @@ -0,0 +1,4 @@ +0 1 1 4 +0 2 1 4 +0 0 1 0 +1 64 1 0 diff --git a/tests/utils/resource/run_2/normal_run/profiler/framework_raw_1.csv b/tests/utils/resource/run_2/normal_run/profiler/framework_raw_1.csv new file mode 100644 index 00000000..1110974f --- /dev/null +++ b/tests/utils/resource/run_2/normal_run/profiler/framework_raw_1.csv @@ -0,0 +1,106 @@ +task_id,stream_id,block_dim,full_op_name,op_name,op_type,subgraph,op_info +4,519,1,Default/AssignAdd-op142,AssignAdd-op142,AssignAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT8"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT8"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT8"", ""shape"": ""1""}}" +6,519,32,Default/TransData-op118,TransData-op118,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,3,227,227""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,1,227,227,16""}}" +10,519,1,Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/OneHot-op3,OneHot-op3,OneHot,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT8"", ""shape"": ""2""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,2""}}" +11,519,1,Default/network-TrainOneStepCell/optimizer-Momentum/learning_rate-_IteratorLearningRate/GatherV2-op32,GatherV2-op32,GatherV2,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT8"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}}" +12,519,1,Default/network-TrainOneStepCell/optimizer-Momentum/AssignAdd-op31,AssignAdd-op31,AssignAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT8"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT8"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT8"", ""shape"": """"}}" +13,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op91,Cast-op91,Cast,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,1,227,227,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,1,227,227,16""}}" +14,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op110,Cast-op110,Cast,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,24,16,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""216,24,16,16""}}" +15,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op111,Cast-op111,Cast,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,16,16,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""216,16,16,16""}}" +16,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Cast-op115,Cast-op115,Cast,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""150,16,16,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""150,16,16,16""}}" +17,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Cast-op116,Cast-op116,Cast,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""144,24,16,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""144,24,16,16""}}" +18,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op117,Cast-op117,Cast,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""121,6,16,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""121,6,16,16""}}" +19,519,8,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Conv2D-op5,Conv2D-op5,Conv2D,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,1,227,227,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""121,6,16,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,55,55,16""}}" +20,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op108,Cast-op108,Cast,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,55,55,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,6,55,55,16""}}" +21,519,60,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op119,ReLUV2-op119,ReLUV2,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,6,55,55,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,6,55,55,16""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT64"", ""shape"": ""2,6,55,55,2""}}" +22,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op98,Cast-op98,Cast,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,6,55,55,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,55,55,16""}}" +23,519,27,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op7,MaxPool-op7,MaxPool,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,55,55,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,27,27,16""}}" +24,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Conv2D-op8,Conv2D-op8,Conv2D,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,27,27,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""150,16,16,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,27,27,16""}}" +25,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Cast-op109,Cast-op109,Cast,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,27,27,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,27,27,16""}}" +26,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op120,ReLUV2-op120,ReLUV2,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,27,27,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,27,27,16""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT64"", ""shape"": ""2,16,27,27,2""}}" +27,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op99,Cast-op99,Cast,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,27,27,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,27,27,16""}}" +28,519,16,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op10,MaxPool-op10,MaxPool,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,27,27,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}}" +29,519,1,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Conv2D-op11,Conv2D-op11,Conv2D,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""144,24,16,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}}" +30,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Cast-op106,Cast-op106,Cast,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}}" +31,519,48,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op121,ReLUV2-op121,ReLUV2,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT64"", ""shape"": ""2,24,13,13,2""}}" +32,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op95,Cast-op95,Cast,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}}" +33,519,2,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Conv2D-op13,Conv2D-op13,Conv2D,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""216,24,16,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}}" +34,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op107,Cast-op107,Cast,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}}" +35,519,48,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op122,ReLUV2-op122,ReLUV2,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT64"", ""shape"": ""2,24,13,13,2""}}" +36,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op97,Cast-op97,Cast,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}}" +37,519,1,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Conv2D-op15,Conv2D-op15,Conv2D,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""216,16,16,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}}" +38,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op114,Cast-op114,Cast,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,13,13,16""}}" +39,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op123,ReLUV2-op123,ReLUV2,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,13,13,16""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT64"", ""shape"": ""2,16,13,13,2""}}" +40,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op112,Cast-op112,Cast,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}}" +41,519,16,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op17,MaxPool-op17,MaxPool,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,6,6,16""}}" +42,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op105,Cast-op105,Cast,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,6,6,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,6,6,16""}}" +43,519,32,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/TransData-op124,TransData-op124,TransData,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,6,6,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,256,6,6""}}" +44,519,1,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op19,MatMul-op19,MatMul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,256,6,6""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,9216""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}}" +45,519,16,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLU-op21,ReLU-op21,ReLU,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}}" +46,519,1,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op22,MatMul-op22,MatMul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,4096""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}}" +47,519,16,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLU-op24,ReLU-op24,ReLU,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}}" +48,519,1,Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op25,MatMul-op25,MatMul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,2""}}" +49,519,1,Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/SoftmaxCrossEntropyWithLogits-op27,SoftmaxCrossEntropyWithLogits-op27,SoftmaxCrossEntropyWithLogits,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,2""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,2""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,2""}}" +50,519,1,Default/AtomicAddrClean-op145,AtomicAddrClean-op145,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}}" +51,519,1,Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/ReduceMean-op87,ReduceMean-op87,ReduceMean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}}" +52,519,1,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/gradSoftmaxCrossEntropyWithLogits/Mul-op29,Mul-op29,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,2""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,2""}}" +53,519,1,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op37,MatMul-op37,MatMul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,2""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}}" +54,519,1,Default/AtomicAddrClean-op146,AtomicAddrClean-op146,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2""}}" +55,519,1,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op30,BiasAddGrad-op30,BiasAddGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,2""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2""}}" +56,519,1,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op40,MatMul-op40,MatMul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,2""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}}" +57,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGrad-op41,ReluGrad-op41,ReluGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}}" +58,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op45,MatMul-op45,MatMul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,4096""}}" +59,519,1,Default/AtomicAddrClean-op147,AtomicAddrClean-op147,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}}" +60,519,2,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op42,BiasAddGrad-op42,BiasAddGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}}" +61,519,1,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op48,MatMul-op48,MatMul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,4096""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}}" +62,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGrad-op49,ReluGrad-op49,ReluGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}}" +63,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op53,MatMul-op53,MatMul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,256,6,6""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,9216""}}" +64,519,1,Default/AtomicAddrClean-op148,AtomicAddrClean-op148,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}}" +65,519,2,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op50,BiasAddGrad-op50,BiasAddGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}}" +66,519,1,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op56,MatMul-op56,MatMul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,9216""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,9216""}}" +67,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/flatten-Flatten/gradReshape/TransData-op125,TransData-op125,TransData,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,9216""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,6,6,16""}}" +68,519,18,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op113,Cast-op113,Cast,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,6,6,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,6,6,16""}}" +69,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op58,MaxPoolGrad-op58,MaxPoolGrad,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}, ""input_1"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,6,6,16""}, ""input_2"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,6,6,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}}" +70,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op104,Cast-op104,Cast,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,13,13,16""}}" +71,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op126,ReluGradV2-op126,ReluGradV2,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,13,13,16""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT64"", ""shape"": ""2,16,13,13,2""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,13,13,16""}}" +72,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Cast-op96,Cast-op96,Cast,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}}" +73,519,25,Default/AtomicAddrClean-op149,AtomicAddrClean-op149,AtomicAddrClean,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,16,16,16""}}" +74,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Conv2DBackpropFilter-op60,Conv2DBackpropFilter-op60,Conv2DBackpropFilter,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}, ""input_1"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,16,16,16""}}" +75,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Conv2DBackpropInput-op63,Conv2DBackpropInput-op63,Conv2DBackpropInput,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""216,16,16,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}}" +76,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Cast-op103,Cast-op103,Cast,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}}" +77,519,48,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op127,ReluGradV2-op127,ReluGradV2,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT64"", ""shape"": ""2,24,13,13,2""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}}" +78,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op94,Cast-op94,Cast,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}}" +79,519,28,Default/AtomicAddrClean-op150,AtomicAddrClean-op150,AtomicAddrClean,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,24,16,16""}}" +80,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropFilter-op65,Conv2DBackpropFilter-op65,Conv2DBackpropFilter,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}, ""input_1"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,24,16,16""}}" +81,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropInput-op68,Conv2DBackpropInput-op68,Conv2DBackpropInput,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""216,24,16,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}}" +82,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op102,Cast-op102,Cast,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}}" +83,519,48,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op128,ReluGradV2-op128,ReluGradV2,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT64"", ""shape"": ""2,24,13,13,2""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}}" +84,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op93,Cast-op93,Cast,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,24,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}}" +85,519,25,Default/AtomicAddrClean-op151,AtomicAddrClean-op151,AtomicAddrClean,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""144,24,16,16""}}" +86,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropFilter-op70,Conv2DBackpropFilter-op70,Conv2DBackpropFilter,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}, ""input_1"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""144,24,16,16""}}" +87,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropInput-op73,Conv2DBackpropInput-op73,Conv2DBackpropInput,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,24,13,13,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""144,24,16,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}}" +88,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op74,MaxPoolGrad-op74,MaxPoolGrad,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,27,27,16""}, ""input_1"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}, ""input_2"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,13,13,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,27,27,16""}}" +89,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op101,Cast-op101,Cast,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,27,27,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,27,27,16""}}" +90,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op129,ReluGradV2-op129,ReluGradV2,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,27,27,16""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT64"", ""shape"": ""2,16,27,27,2""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,27,27,16""}}" +91,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Cast-op92,Cast-op92,Cast,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,16,27,27,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,27,27,16""}}" +92,519,26,Default/AtomicAddrClean-op152,AtomicAddrClean-op152,AtomicAddrClean,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""150,16,16,16""}}" +93,519,48,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Conv2DBackpropFilter-op76,Conv2DBackpropFilter-op76,Conv2DBackpropFilter,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,27,27,16""}, ""input_1"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,27,27,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""150,16,16,16""}}" +94,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Conv2DBackpropInput-op79,Conv2DBackpropInput-op79,Conv2DBackpropInput,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,16,27,27,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""150,16,16,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,27,27,16""}}" +95,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op80,MaxPoolGrad-op80,MaxPoolGrad,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,55,55,16""}, ""input_1"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,27,27,16""}, ""input_2"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,27,27,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,55,55,16""}}" +96,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op100,Cast-op100,Cast,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,55,55,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,6,55,55,16""}}" +97,519,60,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op130,ReluGradV2-op130,ReluGradV2,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,6,55,55,16""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT64"", ""shape"": ""2,6,55,55,2""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,6,55,55,16""}}" +98,519,32,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/gradConv2D/Cast-op90,Cast-op90,Cast,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,6,55,55,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,55,55,16""}}" +99,519,16,Default/AtomicAddrClean-op153,AtomicAddrClean-op153,AtomicAddrClean,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""121,6,16,16""}}" +100,519,38,Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/gradConv2D/Conv2DBackpropFilter-op82,Conv2DBackpropFilter-op82,Conv2DBackpropFilter,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,6,55,55,16""}, ""input_1"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_END"", ""shape"": ""2,1,227,227,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""121,6,16,16""}}" +101,519,2,Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op38,ApplyMomentum-op38,ApplyMomentum,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2,4096""}}" +102,519,1,Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op35,ApplyMomentum-op35,ApplyMomentum,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""2""}}" +103,519,32,Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op46,ApplyMomentum-op46,ApplyMomentum,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,4096""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,4096""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,4096""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,4096""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,4096""}}" +104,519,1,Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op43,ApplyMomentum-op43,ApplyMomentum,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}}" +105,519,32,Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op54,ApplyMomentum-op54,ApplyMomentum,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,9216""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,9216""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,9216""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,9216""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096,9216""}}" +106,519,1,Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op51,ApplyMomentum-op51,ApplyMomentum,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""4096""}}" +107,519,28,Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op61,ApplyMomentum-op61,ApplyMomentum,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,16,16,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,16,16,16""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}, ""input_3"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,16,16,16""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,16,16,16""}, ""output_1"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,16,16,16""}}" +108,519,31,Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op66,ApplyMomentum-op66,ApplyMomentum,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,24,16,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,24,16,16""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}, ""input_3"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,24,16,16""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,24,16,16""}, ""output_1"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""216,24,16,16""}}" +109,519,28,Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op71,ApplyMomentum-op71,ApplyMomentum,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""144,24,16,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""144,24,16,16""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}, ""input_3"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""144,24,16,16""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""144,24,16,16""}, ""output_1"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""144,24,16,16""}}" +110,519,29,Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op77,ApplyMomentum-op77,ApplyMomentum,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""150,16,16,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""150,16,16,16""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}, ""input_3"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""150,16,16,16""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""150,16,16,16""}, ""output_1"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""150,16,16,16""}}" +111,519,18,Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op83,ApplyMomentum-op83,ApplyMomentum,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""121,6,16,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""121,6,16,16""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": ""1""}, ""input_3"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""121,6,16,16""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""UNKNOWN"", ""shape"": """"}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""121,6,16,16""}, ""output_1"": {""format"": ""FracZ"", ""data_type"": ""UNKNOWN"", ""shape"": ""121,6,16,16""}}" +112,519,1,Default/AssignAdd-op138,AssignAdd-op138,AssignAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT8"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT8"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT8"", ""shape"": ""1""}}" diff --git a/tests/utils/resource/run_2/normal_run/profiler/minddata_aicpu_1.txt b/tests/utils/resource/run_2/normal_run/profiler/minddata_aicpu_1.txt new file mode 100644 index 00000000..fef9e8ec --- /dev/null +++ b/tests/utils/resource/run_2/normal_run/profiler/minddata_aicpu_1.txt @@ -0,0 +1,3 @@ +GetNext_dequeue_wait 154907895305 154907895306 3 +GetNext_dequeue_wait 154907895614 154907895614 2 +GetNext_dequeue_wait 154907896920 154907896921 1 diff --git a/tests/utils/resource/run_2/normal_run/profiler/minddata_pipeline_raw_1.csv b/tests/utils/resource/run_2/normal_run/profiler/minddata_pipeline_raw_1.csv new file mode 100644 index 00000000..c5290edb --- /dev/null +++ b/tests/utils/resource/run_2/normal_run/profiler/minddata_pipeline_raw_1.csv @@ -0,0 +1,5 @@ +op_id,op_type,num_workers,output_queue_size,output_queue_average_size,output_queue_length,output_queue_usage_rate,sample_interval,parent_id,children_id +0,BatchOp,4,"[0, 2]",1.0,64,0.015625,10,,[1] +1,MapOp,8,"[0, 0]",0.0,128,0.0,10,0,[2] +2,MapOp,8,"[0, 0]",0.0,128,0.0,10,1,[3] +3,ImageFolderOp,8,"[0, 0]",0.0,128,0.0,10,2, diff --git a/tests/utils/resource/run_2/normal_run/profiler/output_data_preprocess_aicpu_1.txt b/tests/utils/resource/run_2/normal_run/profiler/output_data_preprocess_aicpu_1.txt new file mode 100644 index 00000000..7ce7544b --- /dev/null +++ b/tests/utils/resource/run_2/normal_run/profiler/output_data_preprocess_aicpu_1.txt @@ -0,0 +1,7 @@ +serial_number node_type_name total_time(ms) dispatch_time(ms) run_start run_end +1 InitData 7.906 0.15 154901853050 154901853210 +2 GetNext 0.888 0.132 154907895189 154907895707 +3 EndOfSequence 0.282 0.078 154907896287 154907896335 +4 GetNext 0.293 0.073 154907896880 154907896958 +5 EndOfSequence 0.325 0.091 154907920308 154907920348 +AI CPU Total Time(ms): 9.694000 diff --git a/tests/utils/resource/run_2/normal_run/profiler/output_format_data_hwts_1.txt b/tests/utils/resource/run_2/normal_run/profiler/output_format_data_hwts_1.txt new file mode 100644 index 00000000..969ec940 --- /dev/null +++ b/tests/utils/resource/run_2/normal_run/profiler/output_format_data_hwts_1.txt @@ -0,0 +1,271 @@ +====================45 HWTS data==================== +Type cnt Core_ID Block_ID Task_ID Cycle_counter Stream_ID +Start of task 0 0 0 517_2 15490184485134 517 +End of task 1 0 0 517_2 15490184485134 517 +Start of task 2 0 0 520_2 15490185343879 520 +End of task 3 0 0 520_2 15490185343880 520 +Start of task 4 0 0 517_4 15490185488116 517 +End of task 5 0 0 517_4 15490185488117 517 +Start of task 6 0 0 517_6 15490782610374 517 +End of task 7 0 0 517_6 15490782610375 517 +Start of task 8 0 0 524_2 15490789478422 524 +Start of task 9 0 0 519_2 15490789484734 519 +Start of task 10 0 0 514_3 15490789585192 514 +End of task 11 0 0 514_3 15490789585193 514 +Start of task 12 0 0 514_4 15490789585203 514 +End of task 13 0 0 514_4 15490789585204 514 +Start of task 14 0 0 519_3 15490789595940 519 +End of task 15 0 0 519_3 15490789595945 519 +Start of task 0 0 0 519_4 15490789595956 519 +End of task 1 0 0 519_4 15490789596266 519 +Start of task 2 0 0 519_5 15490789596276 519 +End of task 3 0 0 519_5 15490789596507 519 +Start of task 4 0 0 519_6 15490789596517 519 +Start of task 5 0 0 524_3 15490789598121 524 +End of task 6 0 0 524_3 15490789598125 524 +End of task 7 0 0 519_6 15490789601181 519 +Start of task 8 0 0 519_7 15490789601191 519 +Start of task 9 0 0 524_7 15490789646036 524 +End of task 10 0 0 524_7 15490789646036 524 +Start of task 11 0 0 519_8 15490789654842 519 +End of task 12 0 0 519_8 15490789654847 519 +Start of task 13 0 0 519_10 15490789664191 519 +End of task 14 0 0 519_10 15490789664367 519 +Start of task 15 0 0 519_11 15490789664377 519 +End of task 0 0 0 519_11 15490789664530 519 +Start of task 1 0 0 519_12 15490789664540 519 +End of task 2 0 0 519_12 15490789664665 519 +Start of task 3 0 0 519_13 15490789664675 519 +End of task 4 0 0 519_13 15490789665479 519 +Start of task 5 0 0 519_14 15490789665490 519 +End of task 6 0 0 519_14 15490789666422 519 +Start of task 7 0 0 519_15 15490789666432 519 +End of task 8 0 0 519_15 15490789667205 519 +Start of task 9 0 0 519_16 15490789667215 519 +End of task 10 0 0 519_16 15490789667911 519 +Start of task 11 0 0 519_17 15490789667921 519 +End of task 12 0 0 519_17 15490789668702 519 +Start of task 13 0 0 519_18 15490789668712 519 +End of task 14 0 0 519_18 15490789669226 519 +Start of task 15 0 0 519_19 15490789669236 519 +End of task 0 0 0 519_19 15490789676149 519 +Start of task 1 0 0 519_20 15490789676159 519 +End of task 2 0 0 519_20 15490789676811 519 +Start of task 3 0 0 519_21 15490789676821 519 +End of task 4 0 0 519_21 15490789677761 519 +Start of task 5 0 0 519_22 15490789677771 519 +End of task 6 0 0 519_22 15490789678359 519 +Start of task 7 0 0 519_23 15490789678370 519 +End of task 8 0 0 519_23 15490789678961 519 +Start of task 9 0 0 519_24 15490789678971 519 +End of task 10 0 0 519_24 15490789681383 519 +Start of task 11 0 0 519_25 15490789681393 519 +End of task 12 0 0 519_25 15490789681908 519 +Start of task 13 0 0 519_26 15490789681919 519 +End of task 14 0 0 519_26 15490789682589 519 +Start of task 15 0 0 519_27 15490789682600 519 +End of task 0 0 0 519_27 15490789683159 519 +Start of task 1 0 0 519_28 15490789683169 519 +End of task 2 0 0 519_28 15490789683504 519 +Start of task 3 0 0 519_29 15490789683514 519 +End of task 4 0 0 519_29 15490789700511 519 +Start of task 5 0 0 519_30 15490789700521 519 +End of task 6 0 0 519_30 15490789700940 519 +Start of task 7 0 0 519_31 15490789700950 519 +End of task 8 0 0 519_31 15490789701574 519 +Start of task 9 0 0 519_32 15490789701584 519 +End of task 10 0 0 519_32 15490789702054 519 +Start of task 11 0 0 519_33 15490789702064 519 +Start of task 12 0 0 514_3 15490789708461 514 +End of task 13 0 0 514_3 15490789708461 514 +Start of task 14 0 0 514_4 15490789708472 514 +End of task 15 0 0 514_4 15490789708472 514 +End of task 0 0 0 519_33 15490789711681 519 +Start of task 1 0 0 519_34 15490789711691 519 +End of task 2 0 0 519_34 15490789712063 519 +Start of task 3 0 0 519_35 15490789712073 519 +End of task 4 0 0 519_35 15490789712699 519 +Start of task 5 0 0 519_36 15490789712709 519 +End of task 6 0 0 519_36 15490789713144 519 +Start of task 7 0 0 519_37 15490789713154 519 +End of task 8 0 0 519_37 15490789723322 519 +Start of task 9 0 0 519_38 15490789723332 519 +End of task 10 0 0 519_38 15490789723797 519 +Start of task 11 0 0 519_39 15490789723808 519 +End of task 12 0 0 519_39 15490789724276 519 +Start of task 13 0 0 519_40 15490789724286 519 +End of task 14 0 0 519_40 15490789724662 519 +Start of task 15 0 0 519_41 15490789724672 519 +End of task 0 0 0 519_41 15490789724969 519 +Start of task 1 0 0 519_42 15490789724979 519 +End of task 2 0 0 519_42 15490789725378 519 +Start of task 3 0 0 519_43 15490789725388 519 +End of task 4 0 0 519_43 15490789733619 519 +Start of task 5 0 0 519_44 15490789733629 519 +End of task 6 0 0 519_44 15490790651037 519 +Start of task 7 0 0 519_45 15490790651047 519 +End of task 8 0 0 519_45 15490790651303 519 +Start of task 9 0 0 519_46 15490790651313 519 +End of task 10 0 0 519_46 15490791056150 519 +Start of task 11 0 0 519_47 15490791056161 519 +End of task 12 0 0 519_47 15490791056382 519 +Start of task 13 0 0 519_48 15490791056392 519 +End of task 14 0 0 519_48 15490791056740 519 +Start of task 15 0 0 519_49 15490791056750 519 +End of task 0 0 0 519_49 15490791057114 519 +Start of task 1 0 0 519_50 15490791057125 519 +End of task 2 0 0 519_50 15490791057253 519 +Start of task 3 0 0 519_51 15490791057263 519 +End of task 4 0 0 519_51 15490791057402 519 +Start of task 5 0 0 519_52 15490791057413 519 +End of task 6 0 0 519_52 15490791057545 519 +Start of task 7 0 0 519_53 15490791057556 519 +End of task 8 0 0 519_53 15490791057834 519 +Start of task 9 0 0 519_54 15490791057845 519 +End of task 10 0 0 519_54 15490791057958 519 +Start of task 11 0 0 519_55 15490791057968 519 +End of task 12 0 0 519_55 15490791058107 519 +Start of task 13 0 0 519_56 15490791058117 519 +End of task 14 0 0 519_56 15490791058364 519 +Start of task 15 0 0 519_57 15490791058374 519 +End of task 0 0 0 519_57 15490791058800 519 +Start of task 1 0 0 519_58 15490791058810 519 +End of task 2 0 0 519_58 15490791081446 519 +Start of task 3 0 0 519_59 15490791081456 519 +End of task 4 0 0 519_59 15490791081599 519 +Start of task 5 0 0 519_60 15490791081609 519 +End of task 6 0 0 519_60 15490791081791 519 +Start of task 7 0 0 519_61 15490791081802 519 +End of task 8 0 0 519_61 15490791343487 519 +Start of task 9 0 0 519_62 15490791343498 519 +End of task 10 0 0 519_62 15490791343922 519 +Start of task 11 0 0 519_63 15490791343932 519 +End of task 12 0 0 519_63 15490791377931 519 +Start of task 13 0 0 519_64 15490791377941 519 +End of task 14 0 0 519_64 15490791378085 519 +Start of task 15 0 0 519_65 15490791378096 519 +End of task 0 0 0 519_65 15490791378279 519 +Start of task 1 0 0 519_66 15490791378289 519 +End of task 2 0 0 519_66 15490791802625 519 +Start of task 3 0 0 519_67 15490791802635 519 +End of task 4 0 0 519_67 15490791809077 519 +Start of task 5 0 0 519_68 15490791809087 519 +End of task 6 0 0 519_68 15490791809400 519 +Start of task 7 0 0 519_69 15490791809411 519 +End of task 8 0 0 519_69 15490791809978 519 +Start of task 9 0 0 519_70 15490791809989 519 +End of task 10 0 0 519_70 15490791810409 519 +Start of task 11 0 0 519_71 15490791810419 519 +End of task 12 0 0 519_71 15490791810951 519 +Start of task 13 0 0 519_72 15490791810962 519 +End of task 14 0 0 519_72 15490791811339 519 +Start of task 15 0 0 519_73 15490791811349 519 +End of task 0 0 0 519_73 15490791811895 519 +Start of task 1 0 0 519_74 15490791811906 519 +End of task 2 0 0 519_74 15490791813100 519 +Start of task 3 0 0 519_75 15490791813111 519 +End of task 4 0 0 519_75 15490791814217 519 +Start of task 5 0 0 519_76 15490791814227 519 +End of task 6 0 0 519_76 15490791814624 519 +Start of task 7 0 0 519_77 15490791814634 519 +End of task 8 0 0 519_77 15490791815160 519 +Start of task 9 0 0 519_78 15490791815170 519 +End of task 10 0 0 519_78 15490791815620 519 +Start of task 11 0 0 519_79 15490791815630 519 +End of task 12 0 0 519_79 15490791816245 519 +Start of task 13 0 0 519_80 15490791816255 519 +End of task 14 0 0 519_80 15490791817556 519 +Start of task 15 0 0 519_81 15490791817566 519 +End of task 0 0 0 519_81 15490791818958 519 +Start of task 1 0 0 519_82 15490791818968 519 +End of task 2 0 0 519_82 15490791819355 519 +Start of task 3 0 0 519_83 15490791819365 519 +End of task 4 0 0 519_83 15490791819865 519 +Start of task 5 0 0 519_84 15490791819875 519 +End of task 6 0 0 519_84 15490791820313 519 +Start of task 7 0 0 519_85 15490791820323 519 +End of task 8 0 0 519_85 15490791820829 519 +Start of task 9 0 0 519_86 15490791820839 519 +End of task 10 0 0 519_86 15490791822085 519 +Start of task 11 0 0 519_87 15490791822095 519 +End of task 12 0 0 519_87 15490791824280 519 +Start of task 13 0 0 519_88 15490791824291 519 +End of task 14 0 0 519_88 15490791825884 519 +Start of task 15 0 0 519_89 15490791825894 519 +End of task 0 0 0 519_89 15490791826418 519 +Start of task 1 0 0 519_90 15490791826428 519 +End of task 2 0 0 519_90 15490791827081 519 +Start of task 3 0 0 519_91 15490791827091 519 +End of task 4 0 0 519_91 15490791827637 519 +Start of task 5 0 0 519_92 15490791827647 519 +End of task 6 0 0 519_92 15490791828170 519 +Start of task 7 0 0 519_93 15490791828180 519 +End of task 8 0 0 519_93 15490791830541 519 +Start of task 9 0 0 519_94 15490791830551 519 +End of task 10 0 0 519_94 15490791834462 519 +Start of task 11 0 0 519_95 15490791834472 519 +End of task 12 0 0 519_95 15490791837730 519 +Start of task 13 0 0 519_96 15490791837741 519 +End of task 14 0 0 519_96 15490791838374 519 +Start of task 15 0 0 519_97 15490791838384 519 +End of task 0 0 0 519_97 15490791839252 519 +Start of task 1 0 0 519_98 15490791839263 519 +End of task 2 0 0 519_98 15490791839837 519 +Start of task 3 0 0 519_99 15490791839847 519 +End of task 4 0 0 519_99 15490791840141 519 +Start of task 5 0 0 519_100 15490791840151 519 +End of task 6 0 0 519_100 15490791844723 519 +Start of task 7 0 0 519_101 15490791844733 519 +End of task 8 0 0 519_101 15490791845036 519 +Start of task 9 0 0 519_102 15490791845046 519 +End of task 10 0 0 519_102 15490791845208 519 +Start of task 11 0 0 519_103 15490791845219 519 +End of task 12 0 0 519_103 15490791879990 519 +Start of task 13 0 0 519_104 15490791880000 519 +End of task 14 0 0 519_104 15490791880280 519 +Start of task 15 0 0 519_105 15490791880291 519 +End of task 0 0 0 519_105 15490791958480 519 +Start of task 1 0 0 519_106 15490791958490 519 +End of task 2 0 0 519_106 15490791958766 519 +Start of task 3 0 0 519_107 15490791958776 519 +End of task 4 0 0 519_107 15490791961113 519 +Start of task 5 0 0 519_108 15490791961123 519 +End of task 6 0 0 519_108 15490791964303 519 +Start of task 7 0 0 519_109 15490791964313 519 +End of task 8 0 0 519_109 15490791966522 519 +Start of task 9 0 0 519_110 15490791966532 519 +End of task 10 0 0 519_110 15490791968184 519 +Start of task 11 0 0 519_111 15490791968194 519 +End of task 12 0 0 519_111 15490791968963 519 +Start of task 13 0 0 519_112 15490791968973 519 +End of task 14 0 0 519_112 15490791969121 519 +Start of task 15 0 0 524_2 15490791992232 524 +End of task 0 0 0 524_2 15490791992233 524 +Start of task 1 0 0 524_3 15490791992243 524 +End of task 2 0 0 524_3 15490791992248 524 +Start of task 3 0 0 519_2 15490791998414 519 +End of task 4 0 0 519_2 15490791998414 519 +Start of task 5 0 0 519_3 15490791998430 519 +End of task 6 0 0 519_3 15490791998435 519 +Start of task 7 0 0 519_4 15490791998449 519 +End of task 8 0 0 519_4 15490791998577 519 +Start of task 9 0 0 519_5 15490791998587 519 +End of task 10 0 0 519_5 15490791998684 519 +Start of task 11 0 0 519_6 15490791998694 519 +End of task 12 0 0 519_6 15490792003437 519 +Start of task 13 0 0 519_7 15490792003447 519 +Start of task 14 0 0 520_6 15490792062509 520 +End of task 15 0 0 520_6 15490792062509 520 +Start of task 0 0 0 517_8 15490856795304 517 +End of task 1 0 0 517_8 15490856795304 517 +Start of task 2 0 0 517_10 15490856924349 517 +End of task 3 0 0 517_10 15490856924349 517 +Start of task 4 0 0 517_12 15490857022641 517 +End of task 5 0 0 517_12 15490857022642 517 +Start of task 6 0 0 517_14 15490857113001 517 +End of task 7 0 0 517_14 15490857113001 517 +Start of task 8 0 0 517_16 15490857205450 517 +End of task 9 0 0 517_16 15490857205451 517 +Start of task 10 0 0 517_18 15490857296015 517 +End of task 11 0 0 517_18 15490857296016 517 + diff --git a/tests/utils/resource/run_2/normal_run/profiler/output_op_compute_time_1.txt b/tests/utils/resource/run_2/normal_run/profiler/output_op_compute_time_1.txt new file mode 100644 index 00000000..57f9da88 --- /dev/null +++ b/tests/utils/resource/run_2/normal_run/profiler/output_op_compute_time_1.txt @@ -0,0 +1,109 @@ +====================op compute time==================== +op_name compute_time(ms) stream_id +------------ --------------- --------- +Default/AssignAdd-op142 0.00219 519 +Default/TransData-op118 0.047035 519 +Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/OneHot-op3 0.00176 519 +Default/network-TrainOneStepCell/optimizer-Momentum/learning_rate-_IteratorLearningRate/GatherV2-op32 0.00153 519 +Default/network-TrainOneStepCell/optimizer-Momentum/AssignAdd-op31 0.00125 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op91 0.00804 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op110 0.00932 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op111 0.00773 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Cast-op115 0.00696 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Cast-op116 0.00781 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op117 0.00514 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Conv2D-op5 0.06913 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op108 0.00652 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op119 0.0094 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op98 0.00588 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op7 0.00591 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Conv2D-op8 0.02412 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Cast-op109 0.00515 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op120 0.0067 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op99 0.00559 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op10 0.00335 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Conv2D-op11 0.16997 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Cast-op106 0.00419 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op121 0.00624 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op95 0.0047 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Conv2D-op13 0.09617 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op107 0.00372 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op122 0.00626 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op97 0.00435 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Conv2D-op15 0.10168 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op114 0.00465 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op123 0.00468 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op112 0.00376 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op17 0.00297 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op105 0.00399 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/TransData-op124 0.08231 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op19 9.17408 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLU-op21 0.00256 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op22 4.04837 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLU-op24 0.00221 519 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op25 0.00348 519 +Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/SoftmaxCrossEntropyWithLogits-op27 0.00364 519 +Default/AtomicAddrClean-op145 0.00128 519 +Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/ReduceMean-op87 0.00139 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/gradSoftmaxCrossEntropyWithLogits/Mul-op29 0.00132 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op37 0.00278 519 +Default/AtomicAddrClean-op146 0.00113 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op30 0.00139 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op40 0.00247 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGrad-op41 0.00426 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op45 0.22636 519 +Default/AtomicAddrClean-op147 0.00143 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op42 0.00182 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op48 2.61685 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGrad-op49 0.00424 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op53 0.33999 519 +Default/AtomicAddrClean-op148 0.00144 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op50 0.00183 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op56 4.24336 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/flatten-Flatten/gradReshape/TransData-op125 0.06442 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op113 0.00313 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op58 0.00567 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op104 0.0042 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op126 0.00532 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Cast-op96 0.00377 519 +Default/AtomicAddrClean-op149 0.00546 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Conv2DBackpropFilter-op60 0.01194 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Conv2DBackpropInput-op63 0.01106 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Cast-op103 0.00397 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op127 0.00526 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op94 0.0045 519 +Default/AtomicAddrClean-op150 0.00615 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropFilter-op65 0.01301 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropInput-op68 0.01392 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op102 0.00387 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op128 0.005 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op93 0.00438 519 +Default/AtomicAddrClean-op151 0.00506 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropFilter-op70 0.01246 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropInput-op73 0.02185 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op74 0.01593 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op101 0.00524 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op129 0.00653 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Cast-op92 0.00546 519 +Default/AtomicAddrClean-op152 0.00523 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Conv2DBackpropFilter-op76 0.02361 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Conv2DBackpropInput-op79 0.03911 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op80 0.03258 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op100 0.00633 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op130 0.00868 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/gradConv2D/Cast-op90 0.00574 519 +Default/AtomicAddrClean-op153 0.00294 519 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/gradConv2D/Conv2DBackpropFilter-op82 0.04572 519 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op38 0.00303 519 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op35 0.00162 519 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op46 0.34771 519 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op43 0.0028 519 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op54 0.78189 519 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op51 0.00276 519 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op61 0.02337 519 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op66 0.0318 519 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op71 0.02209 519 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op77 0.01652 519 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op83 0.00769 519 +Default/AssignAdd-op138 0.00148 519 +total op 23.088094999999996 0 diff --git a/tests/utils/resource/run_2/normal_run/profiler/output_op_compute_time_detail_1.txt b/tests/utils/resource/run_2/normal_run/profiler/output_op_compute_time_detail_1.txt new file mode 100644 index 00000000..4e61e9eb --- /dev/null +++ b/tests/utils/resource/run_2/normal_run/profiler/output_op_compute_time_detail_1.txt @@ -0,0 +1,131 @@ +====================op compute time==================== +optype_name compute_time(ms, per-step) called_times(per-step) percent +AssignAdd 0.00492 3 0.02 +TransData 0.193765 3 0.84 +OneHot 0.00176 1 0.01 +GatherV2 0.00153 1 0.01 +Cast 0.14809 28 0.64 +Conv2D 0.46107 5 2.0 +ReLUV2 0.03328 5 0.14 +MaxPool 0.01223 3 0.05 +MatMul 20.65774 9 89.47 +ReLU 0.00477 2 0.02 +SoftmaxCrossEntropyWithLogits 0.00364 1 0.02 +AtomicAddrClean 0.03012 9 0.13 +ReduceMean 0.00139 1 0.01 +Mul 0.00132 1 0.01 +BiasAddGrad 0.00504 3 0.02 +ReluGrad 0.0085 2 0.04 +MaxPoolGrad 0.05418 3 0.23 +ReluGradV2 0.03079 5 0.13 +Conv2DBackpropFilter 0.10674 5 0.46 +Conv2DBackpropInput 0.08594 4 0.37 +ApplyMomentum 1.24128 11 5.38 + +Detail: +op_name op_type avg_execution_time subgraph full_op_name +AssignAdd-op142 AssignAdd 0.00219 Default Default/AssignAdd-op142 +AssignAdd-op138 AssignAdd 0.00148 Default Default/AssignAdd-op138 +AssignAdd-op31 AssignAdd 0.00125 Default Default/network-TrainOneStepCell/optimizer-Momentum/AssignAdd-op31 +TransData-op124 TransData 0.08231 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/TransData-op124 +TransData-op125 TransData 0.06442 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/flatten-Flatten/gradReshape/TransData-op125 +TransData-op118 TransData 0.047035 Default Default/TransData-op118 +OneHot-op3 OneHot 0.00176 Default Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/OneHot-op3 +GatherV2-op32 GatherV2 0.00153 Default Default/network-TrainOneStepCell/optimizer-Momentum/learning_rate-_IteratorLearningRate/GatherV2-op32 +Cast-op110 Cast 0.00932 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op110 +Cast-op91 Cast 0.00804 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op91 +Cast-op116 Cast 0.00781 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Cast-op116 +Cast-op111 Cast 0.00773 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op111 +Cast-op115 Cast 0.00696 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Cast-op115 +Cast-op108 Cast 0.00652 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op108 +Cast-op100 Cast 0.00633 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op100 +Cast-op98 Cast 0.00588 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op98 +Cast-op90 Cast 0.00574 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/gradConv2D/Cast-op90 +Cast-op99 Cast 0.00559 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op99 +Cast-op92 Cast 0.00546 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Cast-op92 +Cast-op101 Cast 0.00524 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op101 +Cast-op109 Cast 0.00515 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Cast-op109 +Cast-op117 Cast 0.00514 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op117 +Cast-op95 Cast 0.0047 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op95 +Cast-op114 Cast 0.00465 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op114 +Cast-op94 Cast 0.0045 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op94 +Cast-op93 Cast 0.00438 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op93 +Cast-op97 Cast 0.00435 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op97 +Cast-op104 Cast 0.0042 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op104 +Cast-op106 Cast 0.00419 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Cast-op106 +Cast-op105 Cast 0.00399 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op105 +Cast-op103 Cast 0.00397 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Cast-op103 +Cast-op102 Cast 0.00387 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op102 +Cast-op96 Cast 0.00377 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Cast-op96 +Cast-op112 Cast 0.00376 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op112 +Cast-op107 Cast 0.00372 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op107 +Cast-op113 Cast 0.00313 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op113 +Conv2D-op11 Conv2D 0.16997 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Conv2D-op11 +Conv2D-op15 Conv2D 0.10168 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Conv2D-op15 +Conv2D-op13 Conv2D 0.09617 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Conv2D-op13 +Conv2D-op5 Conv2D 0.06913 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Conv2D-op5 +Conv2D-op8 Conv2D 0.02412 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Conv2D-op8 +ReLUV2-op119 ReLUV2 0.0094 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op119 +ReLUV2-op120 ReLUV2 0.0067 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op120 +ReLUV2-op122 ReLUV2 0.00626 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op122 +ReLUV2-op121 ReLUV2 0.00624 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op121 +ReLUV2-op123 ReLUV2 0.00468 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op123 +MaxPool-op7 MaxPool 0.00591 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op7 +MaxPool-op10 MaxPool 0.00335 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op10 +MaxPool-op17 MaxPool 0.00297 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op17 +MatMul-op19 MatMul 9.17408 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op19 +MatMul-op56 MatMul 4.24336 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op56 +MatMul-op22 MatMul 4.04837 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op22 +MatMul-op48 MatMul 2.61685 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op48 +MatMul-op53 MatMul 0.33999 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op53 +MatMul-op45 MatMul 0.22636 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op45 +MatMul-op25 MatMul 0.00348 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op25 +MatMul-op37 MatMul 0.00278 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op37 +MatMul-op40 MatMul 0.00247 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op40 +ReLU-op21 ReLU 0.00256 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLU-op21 +ReLU-op24 ReLU 0.00221 Default Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLU-op24 +SoftmaxCrossEntropyWithLogits-op27 SoftmaxCrossEntropyWithLogits 0.00364 Default Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/SoftmaxCrossEntropyWithLogits-op27 +AtomicAddrClean-op150 AtomicAddrClean 0.00615 Default Default/AtomicAddrClean-op150 +AtomicAddrClean-op149 AtomicAddrClean 0.00546 Default Default/AtomicAddrClean-op149 +AtomicAddrClean-op152 AtomicAddrClean 0.00523 Default Default/AtomicAddrClean-op152 +AtomicAddrClean-op151 AtomicAddrClean 0.00506 Default Default/AtomicAddrClean-op151 +AtomicAddrClean-op153 AtomicAddrClean 0.00294 Default Default/AtomicAddrClean-op153 +AtomicAddrClean-op148 AtomicAddrClean 0.00144 Default Default/AtomicAddrClean-op148 +AtomicAddrClean-op147 AtomicAddrClean 0.00143 Default Default/AtomicAddrClean-op147 +AtomicAddrClean-op145 AtomicAddrClean 0.00128 Default Default/AtomicAddrClean-op145 +AtomicAddrClean-op146 AtomicAddrClean 0.00113 Default Default/AtomicAddrClean-op146 +ReduceMean-op87 ReduceMean 0.00139 Default Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/ReduceMean-op87 +Mul-op29 Mul 0.00132 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/gradSoftmaxCrossEntropyWithLogits/Mul-op29 +BiasAddGrad-op50 BiasAddGrad 0.00183 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op50 +BiasAddGrad-op42 BiasAddGrad 0.00182 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op42 +BiasAddGrad-op30 BiasAddGrad 0.00139 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op30 +ReluGrad-op41 ReluGrad 0.00426 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGrad-op41 +ReluGrad-op49 ReluGrad 0.00424 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGrad-op49 +MaxPoolGrad-op80 MaxPoolGrad 0.03258 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op80 +MaxPoolGrad-op74 MaxPoolGrad 0.01593 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op74 +MaxPoolGrad-op58 MaxPoolGrad 0.00567 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op58 +ReluGradV2-op130 ReluGradV2 0.00868 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op130 +ReluGradV2-op129 ReluGradV2 0.00653 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op129 +ReluGradV2-op126 ReluGradV2 0.00532 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op126 +ReluGradV2-op127 ReluGradV2 0.00526 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op127 +ReluGradV2-op128 ReluGradV2 0.005 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op128 +Conv2DBackpropFilter-op82 Conv2DBackpropFilter 0.04572 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/gradConv2D/Conv2DBackpropFilter-op82 +Conv2DBackpropFilter-op76 Conv2DBackpropFilter 0.02361 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Conv2DBackpropFilter-op76 +Conv2DBackpropFilter-op65 Conv2DBackpropFilter 0.01301 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropFilter-op65 +Conv2DBackpropFilter-op70 Conv2DBackpropFilter 0.01246 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropFilter-op70 +Conv2DBackpropFilter-op60 Conv2DBackpropFilter 0.01194 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Conv2DBackpropFilter-op60 +Conv2DBackpropInput-op79 Conv2DBackpropInput 0.03911 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Conv2DBackpropInput-op79 +Conv2DBackpropInput-op73 Conv2DBackpropInput 0.02185 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropInput-op73 +Conv2DBackpropInput-op68 Conv2DBackpropInput 0.01392 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropInput-op68 +Conv2DBackpropInput-op63 Conv2DBackpropInput 0.01106 Gradients Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Conv2DBackpropInput-op63 +ApplyMomentum-op54 ApplyMomentum 0.78189 Default Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op54 +ApplyMomentum-op46 ApplyMomentum 0.34771 Default Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op46 +ApplyMomentum-op66 ApplyMomentum 0.0318 Default Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op66 +ApplyMomentum-op61 ApplyMomentum 0.02337 Default Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op61 +ApplyMomentum-op71 ApplyMomentum 0.02209 Default Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op71 +ApplyMomentum-op77 ApplyMomentum 0.01652 Default Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op77 +ApplyMomentum-op83 ApplyMomentum 0.00769 Default Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op83 +ApplyMomentum-op38 ApplyMomentum 0.00303 Default Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op38 +ApplyMomentum-op43 ApplyMomentum 0.0028 Default Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op43 +ApplyMomentum-op51 ApplyMomentum 0.00276 Default Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op51 +ApplyMomentum-op35 ApplyMomentum 0.00162 Default Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op35 diff --git a/tests/utils/resource/run_2/normal_run/profiler/output_timeline_data_1.txt b/tests/utils/resource/run_2/normal_run/profiler/output_timeline_data_1.txt new file mode 100644 index 00000000..5bae87f0 --- /dev/null +++ b/tests/utils/resource/run_2/normal_run/profiler/output_timeline_data_1.txt @@ -0,0 +1,108 @@ +op_name, stream_id, start_time(ms), duration(ms) +Default/AssignAdd-op142,519,154907895.95956,0.0031 +Default/TransData-op118,519,154907895.96517,0.04664 +Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/OneHot-op3,519,154907896.64191,0.00176 +Default/network-TrainOneStepCell/optimizer-Momentum/learning_rate-_IteratorLearningRate/GatherV2-op32,519,154907896.64377,0.00153 +Default/network-TrainOneStepCell/optimizer-Momentum/AssignAdd-op31,519,154907896.6454,0.00125 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op91,519,154907896.64675,0.00804 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op110,519,154907896.6549,0.00932 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op111,519,154907896.66432,0.00773 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Cast-op115,519,154907896.67215,0.00696 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Cast-op116,519,154907896.67921,0.00781 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op117,519,154907896.68712,0.00514 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Conv2D-op5,519,154907896.69236,0.06913 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/Cast-op108,519,154907896.76159,0.00652 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op119,519,154907896.76821,0.0094 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op98,519,154907896.77771,0.00588 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op7,519,154907896.7837,0.00591 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Conv2D-op8,519,154907896.78971,0.02412 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/Cast-op109,519,154907896.81393,0.00515 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op120,519,154907896.81919,0.0067 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op99,519,154907896.826,0.00559 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op10,519,154907896.83169,0.00335 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Conv2D-op11,519,154907896.83514,0.16997 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Cast-op106,519,154907897.00521,0.00419 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op121,519,154907897.0095,0.00624 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op95,519,154907897.01584,0.0047 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Conv2D-op13,519,154907897.02064,0.09617 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/Cast-op107,519,154907897.11691,0.00372 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op122,519,154907897.12073,0.00626 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op97,519,154907897.12709,0.00435 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Conv2D-op15,519,154907897.13154,0.10168 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/Cast-op114,519,154907897.23332,0.00465 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLUV2-op123,519,154907897.23808,0.00468 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op112,519,154907897.24286,0.00376 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/MaxPool-op17,519,154907897.24672,0.00297 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/Cast-op105,519,154907897.24979,0.00399 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/TransData-op124,519,154907897.25388,0.08231 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op19,519,154907897.33629,9.17408 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLU-op21,519,154907906.51047,0.00256 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op22,519,154907906.51313,4.04837 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/ReLU-op24,519,154907910.56161,0.00221 +Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/MatMul-op25,519,154907910.56392,0.00348 +Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/SoftmaxCrossEntropyWithLogits-op27,519,154907910.5675,0.00364 +Default/AtomicAddrClean-op145,519,154907910.57125,0.00128 +Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/ReduceMean-op87,519,154907910.57263,0.00139 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/gradSoftmaxCrossEntropyWithLogits/Mul-op29,519,154907910.57413,0.00132 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op37,519,154907910.57556,0.00278 +Default/AtomicAddrClean-op146,519,154907910.57845,0.00113 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op30,519,154907910.57968,0.00139 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op40,519,154907910.58117,0.00247 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGrad-op41,519,154907910.58374,0.00426 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op45,519,154907910.5881,0.22636 +Default/AtomicAddrClean-op147,519,154907910.81456,0.00143 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op42,519,154907910.81609,0.00182 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op48,519,154907910.81802,2.61685 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGrad-op49,519,154907913.43498,0.00424 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op53,519,154907913.43932,0.33999 +Default/AtomicAddrClean-op148,519,154907913.77941,0.00144 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradBiasAdd/BiasAddGrad-op50,519,154907913.78096,0.00183 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/fc3-Dense/gradMatMul/MatMul-op56,519,154907913.78289,4.24336 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/flatten-Flatten/gradReshape/TransData-op125,519,154907918.02635,0.06442 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op113,519,154907918.09087,0.00313 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op58,519,154907918.09411,0.00567 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op104,519,154907918.09989,0.0042 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op126,519,154907918.10419,0.00532 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Cast-op96,519,154907918.10962,0.00377 +Default/AtomicAddrClean-op149,519,154907918.11349,0.00546 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Conv2DBackpropFilter-op60,519,154907918.11906,0.01194 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Conv2DBackpropInput-op63,519,154907918.13111,0.01106 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv5-Conv2d/gradConv2D/Cast-op103,519,154907918.14227,0.00397 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op127,519,154907918.14634,0.00526 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op94,519,154907918.1517,0.0045 +Default/AtomicAddrClean-op150,519,154907918.1563,0.00615 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropFilter-op65,519,154907918.16255,0.01301 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropInput-op68,519,154907918.17566,0.01392 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op102,519,154907918.18968,0.00387 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op128,519,154907918.19365,0.005 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Cast-op93,519,154907918.19875,0.00438 +Default/AtomicAddrClean-op151,519,154907918.20323,0.00506 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropFilter-op70,519,154907918.20839,0.01246 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv4-Conv2d/gradConv2D/Conv2DBackpropInput-op73,519,154907918.22095,0.02185 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op74,519,154907918.24291,0.01593 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op101,519,154907918.25894,0.00524 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op129,519,154907918.26428,0.00653 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Cast-op92,519,154907918.27091,0.00546 +Default/AtomicAddrClean-op152,519,154907918.27647,0.00523 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Conv2DBackpropFilter-op76,519,154907918.2818,0.02361 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv2-Conv2d/gradConv2D/Conv2DBackpropInput-op79,519,154907918.30551,0.03911 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/MaxPoolGrad-op80,519,154907918.34472,0.03258 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/gradMaxPool/Cast-op100,519,154907918.37741,0.00633 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/relu-ReLU/gradReLU/ReluGradV2-op130,519,154907918.38384,0.00868 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/gradConv2D/Cast-op90,519,154907918.39263,0.00574 +Default/AtomicAddrClean-op153,519,154907918.39847,0.00294 +Gradients/Default/network-TrainOneStepCell/network-WithLossCell/_backbone-AlexNet/conv1-Conv2d/gradConv2D/Conv2DBackpropFilter-op82,519,154907918.40151,0.04572 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op38,519,154907918.44733,0.00303 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op35,519,154907918.45046,0.00162 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op46,519,154907918.45219,0.34771 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op43,519,154907918.8,0.0028 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op54,519,154907918.80291,0.78189 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op51,519,154907919.5849,0.00276 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op61,519,154907919.58776,0.02337 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op66,519,154907919.61123,0.0318 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op71,519,154907919.64313,0.02209 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op77,519,154907919.66532,0.01652 +Default/network-TrainOneStepCell/optimizer-Momentum/ApplyMomentum-op83,519,154907919.68194,0.00769 +Default/AssignAdd-op138,519,154907919.68973,0.00148 +Default/AssignAdd-op142,519,154907919.98449,0.00128 +Default/TransData-op118,519,154907919.98694,0.04743 diff --git a/tests/utils/resource/run_2/normal_run/profiler/pipeline_profiling_1.json b/tests/utils/resource/run_2/normal_run/profiler/pipeline_profiling_1.json new file mode 100644 index 00000000..4eeed5b8 --- /dev/null +++ b/tests/utils/resource/run_2/normal_run/profiler/pipeline_profiling_1.json @@ -0,0 +1 @@ +{"op_info":[{"metrics":{"output_queue":{"length":128,"size":[0,0],"throughput":[0.0,2.5845222880636986e-08]}},"num_workers":8,"op_id":3,"op_type":"ImageFolderOp"},{"children":[3],"metrics":{"output_queue":{"length":128,"size":[0,0],"throughput":[0.0,2.5845222880636986e-08]}},"num_workers":8,"op_id":2,"op_type":"MapOp"},{"children":[2],"metrics":{"output_queue":{"length":128,"size":[0,0],"throughput":[0.0,2.5845222880636986e-08]}},"num_workers":8,"op_id":1,"op_type":"MapOp"},{"children":[1],"metrics":{"output_queue":{"length":64,"size":[0,2],"throughput":[0.0,6.461305720159247e-09]}},"num_workers":4,"op_id":0,"op_type":"BatchOp"},{"children":[0],"metrics":null,"num_workers":1,"op_id":4,"op_type":"EpochCtrlOp"}],"sampling_interval":10} \ No newline at end of file diff --git a/tests/utils/resource/run_2/normal_run/profiler/step_trace_point_info.json b/tests/utils/resource/run_2/normal_run/profiler/step_trace_point_info.json new file mode 100644 index 00000000..9dd6cb49 --- /dev/null +++ b/tests/utils/resource/run_2/normal_run/profiler/step_trace_point_info.json @@ -0,0 +1 @@ +{"fp_start": "Default/EndOfSequence-op131", "bp_end": "Default/AssignAdd-op138"} \ No newline at end of file diff --git a/tests/utils/resource/run_2/normal_run/profiler/step_trace_raw_1_detail_time.csv b/tests/utils/resource/run_2/normal_run/profiler/step_trace_raw_1_detail_time.csv new file mode 100644 index 00000000..ef8c4786 --- /dev/null +++ b/tests/utils/resource/run_2/normal_run/profiler/step_trace_raw_1_detail_time.csv @@ -0,0 +1,3 @@ +step_num,start_point,end_point,total,fp_point,bp_point,iteration_interval,fp_and_bp,tail +1,15490789606875,15490791977780,2370905,15490789606875,15490791973683,0,2366808,4097 +0,0,0,0,0,0,0,0,0