You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_utils.py 2.7 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """Test the model module."""
  16. import numpy as np
  17. import pandas as pd
  18. import pytest
  19. from mindinsight.optimizer.common.exceptions import SamplesNotEnoughError, CorrelationNanError
  20. from mindinsight.optimizer.utils.importances import calc_hyper_param_importance
  21. from mindinsight.optimizer.utils.utils import is_simple_numpy_number, calc_histogram
  22. def test_is_simple_numpy_number():
  23. assert is_simple_numpy_number(np.int8)
  24. assert is_simple_numpy_number(np.int16)
  25. assert is_simple_numpy_number(np.float)
  26. assert not is_simple_numpy_number(str)
  27. def test_calc_histogram():
  28. """Test calc_histogram function"""
  29. data = np.array([2, 2, 3, 4, 5])
  30. output = calc_histogram(data)
  31. assert output[0][1] == pytest.approx(0.6, 1e-6)
  32. assert output[1][1] == pytest.approx(0.6, 1e-6)
  33. assert output[0][2] == pytest.approx(2.0, 1e-6)
  34. def test_calc_hyper_param_importance_exception_1():
  35. """Test calc_hyper_param_importance function when number of samples is less or equal than 2"""
  36. flattened_lineage = {'epoch': [10, 10], 'accuracy': [32, 32]}
  37. with pytest.raises(SamplesNotEnoughError) as info:
  38. calc_hyper_param_importance(pd.DataFrame(flattened_lineage), 'epoch', 'accuracy')
  39. assert "Number of samples is less or equal than 2." in str(info.value)
  40. def test_calc_hyper_param_importance_exception_2():
  41. """Test calc_hyper_param_importance function when correlation equals to NaN"""
  42. flattened_lineage = {'epoch': [10, 10, 10], 'accuracy': [0.6432, 0.6281, 0.6692]}
  43. with pytest.raises(CorrelationNanError) as info:
  44. calc_hyper_param_importance(pd.DataFrame(flattened_lineage), 'epoch', 'accuracy')
  45. assert "Correlation is nan!" in str(info.value)
  46. def test_calc_hyper_param_importance():
  47. """Test calc_hyper_param_importance function"""
  48. flattened_lineage = {'epoch': [10, 20, 30], 'accuracy': [30, 40, 50]}
  49. result = calc_hyper_param_importance(pd.DataFrame(flattened_lineage), 'epoch', 'accuracy')
  50. assert result == pytest.approx(1.0, 1e-6)