# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Test the model module.""" import numpy as np import pandas as pd import pytest from mindinsight.optimizer.common.exceptions import SamplesNotEnoughError, CorrelationNanError from mindinsight.optimizer.utils.importances import calc_hyper_param_importance from mindinsight.optimizer.utils.utils import is_simple_numpy_number, calc_histogram def test_is_simple_numpy_number(): assert is_simple_numpy_number(np.int8) assert is_simple_numpy_number(np.int16) assert is_simple_numpy_number(np.float) assert not is_simple_numpy_number(str) def test_calc_histogram(): """Test calc_histogram function""" data = np.array([2, 2, 3, 4, 5]) output = calc_histogram(data) assert output[0][1] == pytest.approx(0.6, 1e-6) assert output[1][1] == pytest.approx(0.6, 1e-6) assert output[0][2] == pytest.approx(2.0, 1e-6) def test_calc_hyper_param_importance_exception_1(): """Test calc_hyper_param_importance function when number of samples is less or equal than 2""" flattened_lineage = {'epoch': [10, 10], 'accuracy': [32, 32]} with pytest.raises(SamplesNotEnoughError) as info: calc_hyper_param_importance(pd.DataFrame(flattened_lineage), 'epoch', 'accuracy') assert "Number of samples is less or equal than 2." in str(info.value) def test_calc_hyper_param_importance_exception_2(): """Test calc_hyper_param_importance function when correlation equals to NaN""" flattened_lineage = {'epoch': [10, 10, 10], 'accuracy': [0.6432, 0.6281, 0.6692]} with pytest.raises(CorrelationNanError) as info: calc_hyper_param_importance(pd.DataFrame(flattened_lineage), 'epoch', 'accuracy') assert "Correlation is nan!" in str(info.value) def test_calc_hyper_param_importance(): """Test calc_hyper_param_importance function""" flattened_lineage = {'epoch': [10, 20, 30], 'accuracy': [30, 40, 50]} result = calc_hyper_param_importance(pd.DataFrame(flattened_lineage), 'epoch', 'accuracy') assert result == pytest.approx(1.0, 1e-6)