首先冻结OpenAI官方预训练的ViT-B/32版本的CLIP模型中的全部图像层,再利用AdanBelief优化器训练模型,该优化器是Adan优化器和AdaBelief优化器的融合,在Adan优化器中融入"Belief"增强训练模型的泛化性能。
Updated 2 months ago Python
首先冻结OpenAI官方预训练的ViT-B/32版本的CLIP模型中的全部图像层,再利用AdanBelief优化器训练模型,该优化器是Adan优化器和AdaBelief优化器的融合,在Adan优化器中融入"Belief"增强训练模型的泛化性能。
Updated 2 months ago Python
将在数字图片数据集 MNIST 上训练 Conditional GAN(Conditional generative adversarial nets)模型,通过输入一个随机向量 z 和额外的辅助信息 y (如类别标签),生成特定数字的图像。
Updated 2 months ago Python
冻结ViT-B/32版本的CLIP模型中的全部图像层,用Adan优化器训练模型,训练100个epoch,每隔5个epoch对模型进行保存;完成CLIP模型训练后,运行test_clip.py用测试集中的数据和自定义的提示词对保存的模型进行测试,选取测试精度最好的模型和对应的提示词,运行predict.py文件,选择“min_loss.pth”模型,提交官方系统测试,top1的精度是0.6788。
Updated 2 months ago Python