Browse Source

ADD file via upload

master
BIT2024 1 year ago
parent
commit
e03e7d8a98
1 changed files with 286 additions and 0 deletions
  1. +286
    -0
      jclip/model.py

+ 286
- 0
jclip/model.py View File

@@ -0,0 +1,286 @@
from typing import Tuple, Union

import numpy as np
import jittor as jt
from jittor import nn, init
from .mha import MultiheadAttention


def normal_(module, mean=0, std=1, bias=0):
if hasattr(module, 'weight') and module.weight is not None:
init.gauss_(module.weight, mean, std)
if hasattr(module, 'bias') and isinstance(
module.bias, jt.Var) and module.bias is not None:
init.constant_(module.bias, bias)


class LayerNorm(nn.LayerNorm):

def execute(self, x):
ret = super().execute(x)
return ret


class QuickGELU(nn.Module):

def execute(self, x):
return x * jt.sigmoid(1.702 * x)


class MLP(nn.Module):

def __init__(self, d_model):
super().__init__()
self.c_fc = nn.Linear(d_model, d_model * 4)
self.gelu = QuickGELU()
self.c_proj = nn.Linear(d_model * 4, d_model)

def execute(self, x):
return self.c_proj(self.gelu(self.c_fc(x)))


class ResidualAttentionBlock(nn.Module):

def __init__(self, d_model, n_head, attn_mask):
super().__init__()

self.attn = MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = MLP(d_model)
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask

def attention(self, x):
self.attn_mask = self.attn_mask.to(
dtype=x.dtype) if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False,
attn_mask=self.attn_mask)[0]

def execute(self, x):
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x


class Transformer(nn.Module):

def __init__(self, width, layers, heads, attn_mask=None):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.Sequential(*[
ResidualAttentionBlock(width, heads, attn_mask)
for _ in range(layers)
])

def execute(self, x):
return self.resblocks(x)


class VisionTransformer(nn.Module):

def __init__(self, input_resolution: int, patch_size: int, width: int,
layers: int, heads: int, output_dim: int):
super().__init__()
self.input_resolution = input_resolution
self.output_dim = output_dim
self.conv1 = nn.Conv2d(in_channels=3,
out_channels=width,
kernel_size=patch_size,
stride=patch_size,
bias=False)

scale = width**-0.5
self.class_embedding = scale * jt.randn((width))
self.positional_embedding = scale * jt.randn(
((input_resolution // patch_size)**2 + 1, width))
self.ln_pre = LayerNorm(width)

self.transformer = Transformer(width, layers, heads)

self.ln_post = LayerNorm(width)
self.proj = scale * jt.randn((width, output_dim))

def execute(self, x):
x = self.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1],
-1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = jt.concat([
self.class_embedding.to(x.dtype) + jt.zeros(
(x.shape[0], 1, x.shape[-1]), dtype=x.dtype), x
],
dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
x = self.ln_pre(x)

x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD

x = self.ln_post(x[:, 0, :])

if self.proj is not None:
x = x @ self.proj

return x


class CLIP(nn.Module):

def __init__(
self,
embed_dim: int,
# vision
image_resolution: int,
vision_layers: Union[Tuple[int, int, int, int], int],
vision_width: int,
vision_patch_size: int,
# text
context_length: int,
vocab_size: int,
transformer_width: int,
transformer_heads: int,
transformer_layers: int):
super().__init__()

self.context_length = context_length

vision_heads = vision_width // 64
self.visual = VisionTransformer(input_resolution=image_resolution,
patch_size=vision_patch_size,
width=vision_width,
layers=vision_layers,
heads=vision_heads,
output_dim=embed_dim)

self.transformer = Transformer(width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask())

self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = jt.empty(
(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)

self.text_projection = jt.empty((transformer_width, embed_dim))
self.logit_scale = jt.ones([]) * np.log(1 / 0.07)

self.initialize_parameters()

def initialize_parameters(self):
normal_(self.token_embedding.weight, std=0.02)
normal_(self.positional_embedding, std=0.01)

proj_std = (self.transformer.width**-0.5) * (
(2 * self.transformer.layers)**-0.5)
attn_std = self.transformer.width**-0.5
fc_std = (2 * self.transformer.width)**-0.5
for block in self.transformer.resblocks:
normal_(block.attn.in_proj_weight, std=attn_std)
normal_(block.attn.out_proj.weight, std=proj_std)
normal_(block.mlp.c_fc.weight, std=fc_std)
normal_(block.mlp.c_proj.weight, std=proj_std)

if self.text_projection is not None:
normal_(self.text_projection, std=self.transformer.width**-0.5)

def build_attention_mask(self):
mask = jt.empty((self.context_length, self.context_length))
mask.fill_(float("-inf"))
mask = jt.triu(mask, 1) # zero out the lower diagonal
return mask

@property
def dtype(self):
return self.visual.conv1.weight.dtype

def encode_image(self, image):
return self.visual(image)

def encode_text(self, text):
x = self.token_embedding(text)

x = x + self.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x)

# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[jt.arange(x.shape[0]),
text.argmax(dim=-1)[0]] @ self.text_projection
return x

def execute(self, image, text):
image_features = self.encode_image(image)
text_features = self.encode_text(text)

# normalized features
image_features = image_features / image_features.norm(dim=1,
keepdim=True)
text_features = text_features / text_features.norm(dim=1, keepdim=True)

# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_image = logit_scale * image_features @ text_features.t()
logits_per_text = logits_per_image.t()

# shape = [global_batch_size, global_batch_size]
return logits_per_image, logits_per_text


def build_model(state_dict: dict):
vit = "visual.proj" in state_dict

if vit:
vision_width = state_dict["visual.conv1.weight"].shape[0]
vision_layers = len([
k for k in state_dict.keys()
if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")
])
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
grid_size = round(
(state_dict["visual.positional_embedding"].shape[0] - 1)**0.5)
image_resolution = vision_patch_size * grid_size
else:
counts: list = [
len(
set(
k.split(".")[2] for k in state_dict
if k.startswith(f"visual.layer{b}")))
for b in [1, 2, 3, 4]
]
vision_layers = tuple(counts)
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
output_width = round(
(state_dict["visual.attnpool.positional_embedding"].shape[0] -
1)**0.5)
vision_patch_size = None
assert output_width**2 + 1 == state_dict[
"visual.attnpool.positional_embedding"].shape[0]
image_resolution = output_width * 32

embed_dim = state_dict["text_projection"].shape[1]
context_length = state_dict["positional_embedding"].shape[0]
vocab_size = state_dict["token_embedding.weight"].shape[0]
transformer_width = state_dict["ln_final.weight"].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(
set(
k.split(".")[2] for k in state_dict
if k.startswith("transformer.resblocks")))

model = CLIP(embed_dim, image_resolution, vision_layers, vision_width,
vision_patch_size, context_length, vocab_size,
transformer_width, transformer_heads, transformer_layers)

for key in ["input_resolution", "context_length", "vocab_size"]:
if key in state_dict:
del state_dict[key]

model.load_parameters(state_dict)
return model.eval()

Loading…
Cancel
Save