|
@@ -0,0 +1,286 @@ |
|
|
|
|
|
from typing import Tuple, Union |
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
|
|
|
|
import jittor as jt |
|
|
|
|
|
from jittor import nn, init |
|
|
|
|
|
from .mha import MultiheadAttention |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def normal_(module, mean=0, std=1, bias=0): |
|
|
|
|
|
if hasattr(module, 'weight') and module.weight is not None: |
|
|
|
|
|
init.gauss_(module.weight, mean, std) |
|
|
|
|
|
if hasattr(module, 'bias') and isinstance( |
|
|
|
|
|
module.bias, jt.Var) and module.bias is not None: |
|
|
|
|
|
init.constant_(module.bias, bias) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LayerNorm(nn.LayerNorm): |
|
|
|
|
|
|
|
|
|
|
|
def execute(self, x): |
|
|
|
|
|
ret = super().execute(x) |
|
|
|
|
|
return ret |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class QuickGELU(nn.Module): |
|
|
|
|
|
|
|
|
|
|
|
def execute(self, x): |
|
|
|
|
|
return x * jt.sigmoid(1.702 * x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MLP(nn.Module): |
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, d_model): |
|
|
|
|
|
super().__init__() |
|
|
|
|
|
self.c_fc = nn.Linear(d_model, d_model * 4) |
|
|
|
|
|
self.gelu = QuickGELU() |
|
|
|
|
|
self.c_proj = nn.Linear(d_model * 4, d_model) |
|
|
|
|
|
|
|
|
|
|
|
def execute(self, x): |
|
|
|
|
|
return self.c_proj(self.gelu(self.c_fc(x))) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ResidualAttentionBlock(nn.Module): |
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, d_model, n_head, attn_mask): |
|
|
|
|
|
super().__init__() |
|
|
|
|
|
|
|
|
|
|
|
self.attn = MultiheadAttention(d_model, n_head) |
|
|
|
|
|
self.ln_1 = LayerNorm(d_model) |
|
|
|
|
|
self.mlp = MLP(d_model) |
|
|
|
|
|
self.ln_2 = LayerNorm(d_model) |
|
|
|
|
|
self.attn_mask = attn_mask |
|
|
|
|
|
|
|
|
|
|
|
def attention(self, x): |
|
|
|
|
|
self.attn_mask = self.attn_mask.to( |
|
|
|
|
|
dtype=x.dtype) if self.attn_mask is not None else None |
|
|
|
|
|
return self.attn(x, x, x, need_weights=False, |
|
|
|
|
|
attn_mask=self.attn_mask)[0] |
|
|
|
|
|
|
|
|
|
|
|
def execute(self, x): |
|
|
|
|
|
x = x + self.attention(self.ln_1(x)) |
|
|
|
|
|
x = x + self.mlp(self.ln_2(x)) |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Transformer(nn.Module): |
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, width, layers, heads, attn_mask=None): |
|
|
|
|
|
super().__init__() |
|
|
|
|
|
self.width = width |
|
|
|
|
|
self.layers = layers |
|
|
|
|
|
self.resblocks = nn.Sequential(*[ |
|
|
|
|
|
ResidualAttentionBlock(width, heads, attn_mask) |
|
|
|
|
|
for _ in range(layers) |
|
|
|
|
|
]) |
|
|
|
|
|
|
|
|
|
|
|
def execute(self, x): |
|
|
|
|
|
return self.resblocks(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class VisionTransformer(nn.Module): |
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, input_resolution: int, patch_size: int, width: int, |
|
|
|
|
|
layers: int, heads: int, output_dim: int): |
|
|
|
|
|
super().__init__() |
|
|
|
|
|
self.input_resolution = input_resolution |
|
|
|
|
|
self.output_dim = output_dim |
|
|
|
|
|
self.conv1 = nn.Conv2d(in_channels=3, |
|
|
|
|
|
out_channels=width, |
|
|
|
|
|
kernel_size=patch_size, |
|
|
|
|
|
stride=patch_size, |
|
|
|
|
|
bias=False) |
|
|
|
|
|
|
|
|
|
|
|
scale = width**-0.5 |
|
|
|
|
|
self.class_embedding = scale * jt.randn((width)) |
|
|
|
|
|
self.positional_embedding = scale * jt.randn( |
|
|
|
|
|
((input_resolution // patch_size)**2 + 1, width)) |
|
|
|
|
|
self.ln_pre = LayerNorm(width) |
|
|
|
|
|
|
|
|
|
|
|
self.transformer = Transformer(width, layers, heads) |
|
|
|
|
|
|
|
|
|
|
|
self.ln_post = LayerNorm(width) |
|
|
|
|
|
self.proj = scale * jt.randn((width, output_dim)) |
|
|
|
|
|
|
|
|
|
|
|
def execute(self, x): |
|
|
|
|
|
x = self.conv1(x) # shape = [*, width, grid, grid] |
|
|
|
|
|
x = x.reshape(x.shape[0], x.shape[1], |
|
|
|
|
|
-1) # shape = [*, width, grid ** 2] |
|
|
|
|
|
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] |
|
|
|
|
|
x = jt.concat([ |
|
|
|
|
|
self.class_embedding.to(x.dtype) + jt.zeros( |
|
|
|
|
|
(x.shape[0], 1, x.shape[-1]), dtype=x.dtype), x |
|
|
|
|
|
], |
|
|
|
|
|
dim=1) # shape = [*, grid ** 2 + 1, width] |
|
|
|
|
|
x = x + self.positional_embedding.to(x.dtype) |
|
|
|
|
|
x = self.ln_pre(x) |
|
|
|
|
|
|
|
|
|
|
|
x = x.permute(1, 0, 2) # NLD -> LND |
|
|
|
|
|
x = self.transformer(x) |
|
|
|
|
|
x = x.permute(1, 0, 2) # LND -> NLD |
|
|
|
|
|
|
|
|
|
|
|
x = self.ln_post(x[:, 0, :]) |
|
|
|
|
|
|
|
|
|
|
|
if self.proj is not None: |
|
|
|
|
|
x = x @ self.proj |
|
|
|
|
|
|
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CLIP(nn.Module): |
|
|
|
|
|
|
|
|
|
|
|
def __init__( |
|
|
|
|
|
self, |
|
|
|
|
|
embed_dim: int, |
|
|
|
|
|
# vision |
|
|
|
|
|
image_resolution: int, |
|
|
|
|
|
vision_layers: Union[Tuple[int, int, int, int], int], |
|
|
|
|
|
vision_width: int, |
|
|
|
|
|
vision_patch_size: int, |
|
|
|
|
|
# text |
|
|
|
|
|
context_length: int, |
|
|
|
|
|
vocab_size: int, |
|
|
|
|
|
transformer_width: int, |
|
|
|
|
|
transformer_heads: int, |
|
|
|
|
|
transformer_layers: int): |
|
|
|
|
|
super().__init__() |
|
|
|
|
|
|
|
|
|
|
|
self.context_length = context_length |
|
|
|
|
|
|
|
|
|
|
|
vision_heads = vision_width // 64 |
|
|
|
|
|
self.visual = VisionTransformer(input_resolution=image_resolution, |
|
|
|
|
|
patch_size=vision_patch_size, |
|
|
|
|
|
width=vision_width, |
|
|
|
|
|
layers=vision_layers, |
|
|
|
|
|
heads=vision_heads, |
|
|
|
|
|
output_dim=embed_dim) |
|
|
|
|
|
|
|
|
|
|
|
self.transformer = Transformer(width=transformer_width, |
|
|
|
|
|
layers=transformer_layers, |
|
|
|
|
|
heads=transformer_heads, |
|
|
|
|
|
attn_mask=self.build_attention_mask()) |
|
|
|
|
|
|
|
|
|
|
|
self.vocab_size = vocab_size |
|
|
|
|
|
self.token_embedding = nn.Embedding(vocab_size, transformer_width) |
|
|
|
|
|
self.positional_embedding = jt.empty( |
|
|
|
|
|
(self.context_length, transformer_width)) |
|
|
|
|
|
self.ln_final = LayerNorm(transformer_width) |
|
|
|
|
|
|
|
|
|
|
|
self.text_projection = jt.empty((transformer_width, embed_dim)) |
|
|
|
|
|
self.logit_scale = jt.ones([]) * np.log(1 / 0.07) |
|
|
|
|
|
|
|
|
|
|
|
self.initialize_parameters() |
|
|
|
|
|
|
|
|
|
|
|
def initialize_parameters(self): |
|
|
|
|
|
normal_(self.token_embedding.weight, std=0.02) |
|
|
|
|
|
normal_(self.positional_embedding, std=0.01) |
|
|
|
|
|
|
|
|
|
|
|
proj_std = (self.transformer.width**-0.5) * ( |
|
|
|
|
|
(2 * self.transformer.layers)**-0.5) |
|
|
|
|
|
attn_std = self.transformer.width**-0.5 |
|
|
|
|
|
fc_std = (2 * self.transformer.width)**-0.5 |
|
|
|
|
|
for block in self.transformer.resblocks: |
|
|
|
|
|
normal_(block.attn.in_proj_weight, std=attn_std) |
|
|
|
|
|
normal_(block.attn.out_proj.weight, std=proj_std) |
|
|
|
|
|
normal_(block.mlp.c_fc.weight, std=fc_std) |
|
|
|
|
|
normal_(block.mlp.c_proj.weight, std=proj_std) |
|
|
|
|
|
|
|
|
|
|
|
if self.text_projection is not None: |
|
|
|
|
|
normal_(self.text_projection, std=self.transformer.width**-0.5) |
|
|
|
|
|
|
|
|
|
|
|
def build_attention_mask(self): |
|
|
|
|
|
mask = jt.empty((self.context_length, self.context_length)) |
|
|
|
|
|
mask.fill_(float("-inf")) |
|
|
|
|
|
mask = jt.triu(mask, 1) # zero out the lower diagonal |
|
|
|
|
|
return mask |
|
|
|
|
|
|
|
|
|
|
|
@property |
|
|
|
|
|
def dtype(self): |
|
|
|
|
|
return self.visual.conv1.weight.dtype |
|
|
|
|
|
|
|
|
|
|
|
def encode_image(self, image): |
|
|
|
|
|
return self.visual(image) |
|
|
|
|
|
|
|
|
|
|
|
def encode_text(self, text): |
|
|
|
|
|
x = self.token_embedding(text) |
|
|
|
|
|
|
|
|
|
|
|
x = x + self.positional_embedding |
|
|
|
|
|
x = x.permute(1, 0, 2) # NLD -> LND |
|
|
|
|
|
x = self.transformer(x) |
|
|
|
|
|
x = x.permute(1, 0, 2) # LND -> NLD |
|
|
|
|
|
x = self.ln_final(x) |
|
|
|
|
|
|
|
|
|
|
|
# x.shape = [batch_size, n_ctx, transformer.width] |
|
|
|
|
|
# take features from the eot embedding (eot_token is the highest number in each sequence) |
|
|
|
|
|
x = x[jt.arange(x.shape[0]), |
|
|
|
|
|
text.argmax(dim=-1)[0]] @ self.text_projection |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
def execute(self, image, text): |
|
|
|
|
|
image_features = self.encode_image(image) |
|
|
|
|
|
text_features = self.encode_text(text) |
|
|
|
|
|
|
|
|
|
|
|
# normalized features |
|
|
|
|
|
image_features = image_features / image_features.norm(dim=1, |
|
|
|
|
|
keepdim=True) |
|
|
|
|
|
text_features = text_features / text_features.norm(dim=1, keepdim=True) |
|
|
|
|
|
|
|
|
|
|
|
# cosine similarity as logits |
|
|
|
|
|
logit_scale = self.logit_scale.exp() |
|
|
|
|
|
logits_per_image = logit_scale * image_features @ text_features.t() |
|
|
|
|
|
logits_per_text = logits_per_image.t() |
|
|
|
|
|
|
|
|
|
|
|
# shape = [global_batch_size, global_batch_size] |
|
|
|
|
|
return logits_per_image, logits_per_text |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def build_model(state_dict: dict): |
|
|
|
|
|
vit = "visual.proj" in state_dict |
|
|
|
|
|
|
|
|
|
|
|
if vit: |
|
|
|
|
|
vision_width = state_dict["visual.conv1.weight"].shape[0] |
|
|
|
|
|
vision_layers = len([ |
|
|
|
|
|
k for k in state_dict.keys() |
|
|
|
|
|
if k.startswith("visual.") and k.endswith(".attn.in_proj_weight") |
|
|
|
|
|
]) |
|
|
|
|
|
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] |
|
|
|
|
|
grid_size = round( |
|
|
|
|
|
(state_dict["visual.positional_embedding"].shape[0] - 1)**0.5) |
|
|
|
|
|
image_resolution = vision_patch_size * grid_size |
|
|
|
|
|
else: |
|
|
|
|
|
counts: list = [ |
|
|
|
|
|
len( |
|
|
|
|
|
set( |
|
|
|
|
|
k.split(".")[2] for k in state_dict |
|
|
|
|
|
if k.startswith(f"visual.layer{b}"))) |
|
|
|
|
|
for b in [1, 2, 3, 4] |
|
|
|
|
|
] |
|
|
|
|
|
vision_layers = tuple(counts) |
|
|
|
|
|
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] |
|
|
|
|
|
output_width = round( |
|
|
|
|
|
(state_dict["visual.attnpool.positional_embedding"].shape[0] - |
|
|
|
|
|
1)**0.5) |
|
|
|
|
|
vision_patch_size = None |
|
|
|
|
|
assert output_width**2 + 1 == state_dict[ |
|
|
|
|
|
"visual.attnpool.positional_embedding"].shape[0] |
|
|
|
|
|
image_resolution = output_width * 32 |
|
|
|
|
|
|
|
|
|
|
|
embed_dim = state_dict["text_projection"].shape[1] |
|
|
|
|
|
context_length = state_dict["positional_embedding"].shape[0] |
|
|
|
|
|
vocab_size = state_dict["token_embedding.weight"].shape[0] |
|
|
|
|
|
transformer_width = state_dict["ln_final.weight"].shape[0] |
|
|
|
|
|
transformer_heads = transformer_width // 64 |
|
|
|
|
|
transformer_layers = len( |
|
|
|
|
|
set( |
|
|
|
|
|
k.split(".")[2] for k in state_dict |
|
|
|
|
|
if k.startswith("transformer.resblocks"))) |
|
|
|
|
|
|
|
|
|
|
|
model = CLIP(embed_dim, image_resolution, vision_layers, vision_width, |
|
|
|
|
|
vision_patch_size, context_length, vocab_size, |
|
|
|
|
|
transformer_width, transformer_heads, transformer_layers) |
|
|
|
|
|
|
|
|
|
|
|
for key in ["input_resolution", "context_length", "vocab_size"]: |
|
|
|
|
|
if key in state_dict: |
|
|
|
|
|
del state_dict[key] |
|
|
|
|
|
|
|
|
|
|
|
model.load_parameters(state_dict) |
|
|
|
|
|
return model.eval() |