Are you sure you want to delete this task? Once this task is deleted, it cannot be recovered.
|
3 years ago | |
---|---|---|
.. | ||
kamal | 3 years ago | |
README.md | 3 years ago | |
TFL.py | 3 years ago | |
THL.py | 3 years ago | |
TTL.py | 3 years ago | |
flow.py | 3 years ago | |
requirements.txt | 3 years ago |
模型炼知是用于知识融合和模型迁移性度量,而建立的轻量级算法包,详情请见 KAE。
python3 TTL.py --car_ckpt ./ckpt/car_res50_model stanford_dogs --dog_ckpt ./ckpt/dog_res50_model
python3 THL.py --car_ckpt ./ckpt/car_res50_model stanford_dogs --dog_ckpt ./ckpt/dog_res50_model --aircraft_ckpt ./ckpt/aircraft_res50_model
python3 TFL.py --car_ckpt ./ckpt/car_res50_model stanford_dogs --dog_ckpt ./ckpt/dog_res50_model --aircraft_ckpt ./ckpt/aircraft_res50_model --flower_ckpt ./ckpt/flower_res50_model
pytorch weights convert oneflow
文件夹MODEL_ckpt保存的是三个模型重组/炼知算法的权重,oneflow格式,供复现时参考。ckpt文件夹为pytorch权重转为oneflow权重,用于教师模型加载权重,内存占用较大,改为放在下方链接。
This project is simplified by KAE, which is developed by VIPA Lab from Zhejiang University and Zhejiang Lab
模型炼知是由浙江大学VIPA团队于2019-2020年期间提出,其目的是建立轻量化的知识融合算法和解决深度模型迁移性度量问题。 本仓库包含TTL、THL、TFL三个模型炼知示例算法,用于计算机视觉领域,通过将多个同构或异构教师重组,实现知识融合,获得定制化的、全能型的学生模型,解决所有教师任务,学生模型性能相比于传统训练结果显著提高。因此,模型炼知具有深入研究和实际应用价值。
Python