|
- #!/usr/bin/env python
- # coding=utf-8
- # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
-
- import jittor as jt
-
- jt.flags.use_rocm = 1
- import jittor.nn as nn
- import argparse
- import copy
- import logging
- import math
- import os
- import warnings
- from pathlib import Path
-
- import numpy as np
- import transformers
- from peft import LoraConfig
- from peft.utils import get_peft_model_state_dict
- from PIL import Image
- from PIL.ImageOps import exif_transpose
- from jittor import transform
- from jittor.compatibility.optim import AdamW
- from jittor.compatibility.utils.data import Dataset, DataLoader
- from tqdm.auto import tqdm
- from transformers import AutoTokenizer, PretrainedConfig
-
- import diffusers
- from JDiffusion import (
- AutoencoderKL,
- UNet2DConditionModel,
- )
- from diffusers import DDPMScheduler
- from diffusers.loaders import LoraLoaderMixin
- from diffusers.optimization import get_scheduler
- from diffusers.utils import (
- convert_state_dict_to_diffusers,
- )
-
-
- def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
- text_encoder_config = PretrainedConfig.from_pretrained(
- pretrained_model_name_or_path,
- subfolder="text_encoder",
- revision=revision,
- )
- model_class = text_encoder_config.architectures[0]
-
- if model_class == "CLIPTextModel":
- from transformers import CLIPTextModel
- return CLIPTextModel
- elif model_class == "T5EncoderModel":
- from transformers import T5EncoderModel
- return T5EncoderModel
- else:
- raise ValueError(f"{model_class} is not supported.")
-
-
- def parse_args(input_args=None):
- parser = argparse.ArgumentParser(description="Simple example of a training script.")
- parser.add_argument(
- "--num_process",
- type=int,
- default=1
- )
- parser.add_argument(
- "--pretrained_model_name_or_path",
- type=str,
- default=None,
- required=True,
- help="Path to pretrained model or model identifier from huggingface.co/models.",
- )
- parser.add_argument(
- "--revision",
- type=str,
- default=None,
- required=False,
- help="Revision of pretrained model identifier from huggingface.co/models.",
- )
- parser.add_argument(
- "--variant",
- type=str,
- default=None,
- help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
- )
- parser.add_argument(
- "--tokenizer_name",
- type=str,
- default=None,
- help="Pretrained tokenizer name or path if not the same as model_name",
- )
- parser.add_argument(
- "--instance_data_dir",
- type=str,
- default=None,
- required=True,
- help="A folder containing the training data of instance images.",
- )
- parser.add_argument(
- "--class_data_dir",
- type=str,
- default=None,
- required=False,
- help="A folder containing the training data of class images.",
- )
- parser.add_argument(
- "--instance_prompt",
- type=str,
- default=None,
- required=True,
- help="The prompt with identifier specifying the instance",
- )
- parser.add_argument(
- "--class_prompt",
- type=str,
- default=None,
- help="The prompt to specify images in the same class as provided instance images.",
- )
- parser.add_argument(
- "--with_prior_preservation",
- default=False,
- action="store_true",
- help="Flag to add prior preservation loss.",
- )
- parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
- parser.add_argument(
- "--num_class_images",
- type=int,
- default=100,
- help=(
- "Minimal class images for prior preservation loss. If there are not enough images already present in"
- " class_data_dir, additional images will be sampled with class_prompt."
- ),
- )
- parser.add_argument(
- "--output_dir",
- type=str,
- default="lora-dreambooth-model",
- help="The output directory where the model predictions and checkpoints will be written.",
- )
- parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
- parser.add_argument(
- "--resolution",
- type=int,
- default=512,
- help=(
- "The resolution for input images, all the images in the train/validation dataset will be resized to this"
- " resolution"
- ),
- )
- parser.add_argument(
- "--center_crop",
- default=False,
- action="store_true",
- help=(
- "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
- " cropped. The images will be resized to the resolution first before cropping."
- ),
- )
- parser.add_argument(
- "--train_batch_size", type=int, default=5, help="Batch size (per device) for the training dataloader."
- )
- parser.add_argument(
- "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
- )
- parser.add_argument("--num_train_epochs", type=int, default=1)
- parser.add_argument(
- "--max_train_steps",
- type=int,
- default=None,
- help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
- )
- parser.add_argument(
- "--gradient_accumulation_steps",
- type=int,
- default=1,
- help="Number of updates steps to accumulate before performing a backward/update pass.",
- )
- parser.add_argument(
- "--gradient_checkpointing",
- action="store_true",
- help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
- )
- parser.add_argument(
- "--learning_rate",
- type=float,
- default=5e-4,
- help="Initial learning rate (after the potential warmup period) to use.",
- )
- parser.add_argument(
- "--scale_lr",
- action="store_true",
- default=False,
- help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
- )
- parser.add_argument(
- "--lr_scheduler",
- type=str,
- default="constant",
- help=(
- 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
- ' "constant", "constant_with_warmup"]'
- ),
- )
- parser.add_argument(
- "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
- )
- parser.add_argument(
- "--lr_num_cycles",
- type=int,
- default=1,
- help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
- )
- parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
- parser.add_argument(
- "--dataloader_num_workers",
- type=int,
- default=0,
- help=(
- "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
- ),
- )
- parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
- parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
- parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
- parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
- parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
- parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
- parser.add_argument(
- "--tokenizer_max_length",
- type=int,
- default=None,
- required=False,
- help="The maximum length of the tokenizer. If not set, will default to the tokenizer's max length.",
- )
- parser.add_argument(
- "--text_encoder_use_attention_mask",
- action="store_true",
- required=False,
- help="Whether to use attention mask for the text encoder",
- )
- parser.add_argument(
- "--validation_images",
- required=False,
- default=None,
- nargs="+",
- help="Optional set of images to use for validation. Used when the target pipeline takes an initial image as input such as when training image variation or superresolution.",
- )
- parser.add_argument(
- "--class_labels_conditioning",
- required=False,
- default=None,
- help="The optional `class_label` conditioning to pass to the unet, available values are `timesteps`.",
- )
- parser.add_argument(
- "--rank",
- type=int,
- default=4,
- help=("The dimension of the LoRA update matrices."),
- )
- parser.add_argument(
- "--checkpoint_save_steps",
- type=int,
- default=500,
- help="Frequency number of saving checkpoint steps to perform.",
- )
- parser.add_argument(
- "--checkpoint_save_epochs",
- type=int,
- default=50,
- help="Frequency number of saving checkpoint steps to perform.",
- )
-
- if input_args is not None:
- args = parser.parse_args(input_args)
- else:
- args = parser.parse_args()
-
- # logger is not available yet
- if args.class_data_dir is not None:
- warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
- if args.class_prompt is not None:
- warnings.warn("You need not use --class_prompt without --with_prior_preservation.")
-
- return args
-
-
- class DreamBoothDataset(Dataset):
- """
- A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
- It pre-processes the images and the tokenizes prompts.
- """
-
- def __init__(
- self,
- instance_data_root,
- instance_prompt,
- tokenizer,
- class_data_root=None,
- class_prompt=None,
- class_num=None,
- size=512,
- center_crop=False,
- encoder_hidden_states=None,
- class_prompt_encoder_hidden_states=None,
- tokenizer_max_length=None,
- ):
- self.size = size
- self.center_crop = center_crop
- self.tokenizer = tokenizer
- self.encoder_hidden_states = encoder_hidden_states
- self.class_prompt_encoder_hidden_states = class_prompt_encoder_hidden_states
- self.tokenizer_max_length = tokenizer_max_length
-
- self.instance_data_root = Path(instance_data_root)
- if not self.instance_data_root.exists():
- raise ValueError("Instance images root doesn't exists.")
-
- self.instance_images_path = list(Path(instance_data_root).iterdir())
- self.num_instance_images = len(self.instance_images_path)
- self.instance_prompt = instance_prompt
- self._length = self.num_instance_images
-
- if class_data_root is not None:
- self.class_data_root = Path(class_data_root)
- self.class_data_root.mkdir(parents=True, exist_ok=True)
- self.class_images_path = list(self.class_data_root.iterdir())
- if class_num is not None:
- self.num_class_images = min(len(self.class_images_path), class_num)
- else:
- self.num_class_images = len(self.class_images_path)
- self._length = max(self.num_class_images, self.num_instance_images)
- self.class_prompt = class_prompt
- else:
- self.class_data_root = None
-
- self.image_transforms = transform.Compose(
- [
- transform.Resize(size),
- transform.CenterCrop(size) if center_crop else transform.RandomCrop(size),
- transform.ToTensor(),
- transform.ImageNormalize([0.5], [0.5]),
- ]
- )
-
- def __len__(self):
- return self._length
-
- def __getitem__(self, index):
- example = {}
- instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
- instance_image = exif_transpose(instance_image)
- prompt = "A photo of {}".format(
- str(self.instance_images_path[index % self.num_instance_images]).
- split("/")[-1].split(".")[-2].replace("_", " ")) + self.instance_prompt
- print("Prompt:", prompt)
-
- if not instance_image.mode == "RGB":
- instance_image = instance_image.convert("RGB")
- example["instance_images"] = self.image_transforms(instance_image)
-
- if self.encoder_hidden_states is not None:
- example["instance_prompt_ids"] = self.encoder_hidden_states
- else:
- text_inputs = tokenize_prompt(
- self.tokenizer, prompt, tokenizer_max_length=self.tokenizer_max_length
- )
- example["instance_prompt_ids"] = text_inputs.input_ids
- example["instance_attention_mask"] = text_inputs.attention_mask
-
- if self.class_data_root:
- class_image = Image.open(self.class_images_path[index % self.num_class_images])
- class_image = exif_transpose(class_image)
-
- if not class_image.mode == "RGB":
- class_image = class_image.convert("RGB")
- example["class_images"] = self.image_transforms(class_image)
-
- if self.class_prompt_encoder_hidden_states is not None:
- example["class_prompt_ids"] = self.class_prompt_encoder_hidden_states
- else:
- class_text_inputs = tokenize_prompt(
- self.tokenizer, self.class_prompt, tokenizer_max_length=self.tokenizer_max_length
- )
- example["class_prompt_ids"] = class_text_inputs.input_ids
- example["class_attention_mask"] = class_text_inputs.attention_mask
-
- return example
-
-
- def collate_fn(examples, with_prior_preservation=False):
- has_attention_mask = "instance_attention_mask" in examples[0]
-
- input_ids = [example["instance_prompt_ids"] for example in examples]
- pixel_values = [example["instance_images"] for example in examples]
-
- if has_attention_mask:
- attention_mask = [example["instance_attention_mask"] for example in examples]
-
- pixel_values = jt.stack(pixel_values)
- pixel_values = pixel_values.float()
-
- input_ids = jt.cat(input_ids, dim=0)
-
- batch = {
- "input_ids": input_ids,
- "pixel_values": pixel_values,
- }
-
- if has_attention_mask:
- batch["attention_mask"] = attention_mask
-
- return batch
-
-
- class PromptDataset(Dataset):
- "A simple dataset to prepare the prompts to generate class images on multiple GPUs."
-
- def __init__(self, prompt, num_samples):
- self.prompt = prompt
- self.num_samples = num_samples
-
- def __len__(self):
- return self.num_samples
-
- def __getitem__(self, index):
- example = {}
- example["prompt"] = self.prompt
- example["index"] = index
- return example
-
-
- def tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None):
- if tokenizer_max_length is not None:
- max_length = tokenizer_max_length
- else:
- max_length = tokenizer.model_max_length
-
- text_inputs = tokenizer(
- prompt,
- truncation=True,
- padding="max_length",
- max_length=max_length,
- return_tensors="pt",
- )
-
- return text_inputs
-
-
- def encode_prompt(text_encoder, input_ids, attention_mask, text_encoder_use_attention_mask=None):
- text_input_ids = input_ids.to(text_encoder.device)
-
- if text_encoder_use_attention_mask:
- attention_mask = attention_mask.to(text_encoder.device)
- else:
- attention_mask = None
-
- prompt_embeds = text_encoder(
- text_input_ids,
- attention_mask=attention_mask,
- return_dict=False,
- )
- prompt_embeds = prompt_embeds[0]
-
- return prompt_embeds
-
-
- def main(args):
- # Make one log on every process with the configuration for debugging.
- logging.basicConfig(
- format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
- datefmt="%m/%d/%Y %H:%M:%S",
- level=logging.INFO,
- )
- transformers.utils.logging.set_verbosity_warning()
- diffusers.utils.logging.set_verbosity_info()
-
- # Handle the repository creation
- # if args.output_dir is not None:
- # os.makedirs(args.output_dir, exist_ok=True)
-
- # Load the tokenizer
- if args.tokenizer_name:
- tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
- elif args.pretrained_model_name_or_path:
- tokenizer = AutoTokenizer.from_pretrained(
- args.pretrained_model_name_or_path,
- subfolder="tokenizer",
- revision=args.revision,
- use_fast=False,
- )
-
- # import correct text encoder class
- text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
-
- # Load scheduler and models
- noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
- text_encoder = text_encoder_cls.from_pretrained(
- args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
- )
- vae = AutoencoderKL.from_pretrained(
- args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision
- )
-
- unet = UNet2DConditionModel.from_pretrained(
- args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
- )
-
- # We only train the additional adapter LoRA layers
- # if vae is not None:
- # vae.requires_grad_(False)
- # text_encoder.requires_grad_(False)
- # unet.requires_grad_(False)
-
- # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision
- # as these weights are only used for inference, keeping weights in full precision is not required.
- weight_dtype = jt.float32
-
- # Move unet, vae and text_encoder to device and cast to weight_dtype
- # unet.to("cuda", dtype=weight_dtype)
- # if vae is not None:
- # vae.to("cuda", dtype=weight_dtype)
- # text_encoder.to("cuda", dtype=weight_dtype)
-
- for name, param in unet.named_parameters():
- assert param.requires_grad == False, name
- # now we will add new LoRA weights to the attention layers
- unet_lora_config = LoraConfig(
- r=args.rank,
- lora_alpha=args.rank,
- init_lora_weights="gaussian",
- target_modules=["to_k", "to_q", "to_v", "to_out.0", "add_k_proj", "add_v_proj"],
- )
- unet.add_adapter(unet_lora_config)
-
- # Optimizer creation
-
- optimizer = AdamW(
- list(unet.parameters()),
- lr=args.learning_rate,
- betas=(args.adam_beta1, args.adam_beta2),
- weight_decay=args.adam_weight_decay,
- eps=args.adam_epsilon,
- )
-
- pre_computed_encoder_hidden_states = None
- pre_computed_class_prompt_encoder_hidden_states = None
-
- # Dataset and DataLoaders creation:
- train_dataset = DreamBoothDataset(
- instance_data_root=args.instance_data_dir,
- instance_prompt=args.instance_prompt,
- class_data_root=args.class_data_dir if args.with_prior_preservation else None,
- class_prompt=args.class_prompt,
- class_num=args.num_class_images,
- tokenizer=tokenizer,
- size=args.resolution,
- center_crop=args.center_crop,
- encoder_hidden_states=pre_computed_encoder_hidden_states,
- class_prompt_encoder_hidden_states=pre_computed_class_prompt_encoder_hidden_states,
- tokenizer_max_length=args.tokenizer_max_length,
- )
-
- train_dataloader = DataLoader(
- train_dataset,
- batch_size=args.train_batch_size,
- shuffle=True,
- collate_fn=lambda examples: collate_fn(examples, False),
- num_workers=args.dataloader_num_workers,
- )
-
- # Scheduler and math around the number of training steps.
- overrode_max_train_steps = False
- num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
- if args.max_train_steps is None:
- args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
- overrode_max_train_steps = True
-
- lr_scheduler = get_scheduler(
- args.lr_scheduler,
- optimizer=optimizer,
- num_warmup_steps=args.lr_warmup_steps * args.num_process,
- num_training_steps=args.max_train_steps * args.num_process,
- num_cycles=args.lr_num_cycles,
- power=args.lr_power,
- )
-
- # We need to recalculate our total training steps as the size of the training dataloader may have changed.
- num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
- if overrode_max_train_steps:
- args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
- # Afterwards we recalculate our number of training epochs
- args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
-
- # We need to initialize the trackers we use, and also store our configuration.
- # The trackers initializes automatically on the main process.
- tracker_config = vars(copy.deepcopy(args))
- tracker_config.pop("validation_images")
-
- # Train!
- total_batch_size = args.train_batch_size * args.num_process * args.gradient_accumulation_steps
-
- print("***** Running training *****")
- print(f" Num examples = {len(train_dataset)}")
- print(f" Num batches each epoch = {len(train_dataloader)}")
- print(f" Num Epochs = {args.num_train_epochs}")
- print(f" Instantaneous batch size per device = {args.train_batch_size}")
- print(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
- print(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
- print(f" Total optimization steps = {args.max_train_steps}")
- global_step = 0
- first_epoch = 0
-
- initial_global_step = 0
-
- progress_bar = tqdm(
- range(0, args.max_train_steps),
- initial=initial_global_step,
- desc="Steps",
- # Only show the progress bar once on each machine.
- disable=False,
- )
-
- losses_list, lr_list = [], []
- for epoch in range(first_epoch, args.num_train_epochs):
- for step, batch in enumerate(train_dataloader):
- pixel_values = batch["pixel_values"].to(dtype=weight_dtype)
-
- # Convert images to latent space
- model_input = vae.encode(pixel_values).latent_dist.sample()
- model_input = model_input * vae.config.scaling_factor
-
- # Sample noise that we'll add to the latents
- noise = jt.randn_like(model_input)
- bsz, channels, height, width = model_input.shape
- # Sample a random timestep for each image
- timesteps = jt.randint(
- 0, noise_scheduler.config.num_train_timesteps, (bsz,),
- ).to(device=model_input.device)
- timesteps = timesteps.long()
-
- # Add noise to the model input according to the noise magnitude at each timestep
- # (this is the forward diffusion process)
- noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
-
- # Get the text embedding for conditioning
- encoder_hidden_states = encode_prompt(
- text_encoder,
- batch["input_ids"],
- batch["attention_mask"],
- text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
- )
-
- if unet.config.in_channels == channels * 2:
- noisy_model_input = jt.cat([noisy_model_input, noisy_model_input], dim=1)
-
- if args.class_labels_conditioning == "timesteps":
- class_labels = timesteps
- else:
- class_labels = None
-
- # Predict the noise residual
- model_pred = unet(
- noisy_model_input,
- timesteps,
- encoder_hidden_states,
- class_labels=class_labels,
- return_dict=False,
- )[0]
-
- # if model predicts variance, throw away the prediction. we will only train on the
- # simplified training objective. This means that all schedulers using the fine tuned
- # model must be configured to use one of the fixed variance variance types.
- if model_pred.shape[1] == 6:
- model_pred, _ = jt.chunk(model_pred, 2, dim=1)
-
- # Get the target for loss depending on the prediction type
- if noise_scheduler.config.prediction_type == "epsilon":
- target = noise
- elif noise_scheduler.config.prediction_type == "v_prediction":
- target = noise_scheduler.get_velocity(model_input, noise, timesteps)
- else:
- raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
-
- loss = nn.mse_loss(model_pred, target)
- loss.backward()
-
- optimizer.step()
- lr_scheduler.step()
- optimizer.zero_grad()
-
- progress_bar.update(1)
- global_step += 1
-
- logs = {"loss": loss.detach().item()}
- losses_list.append(loss.detach().item())
- lr_list.append(lr_scheduler.get_last_lr()[0])
- # logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
- progress_bar.set_postfix(**logs)
-
- if global_step >= args.max_train_steps:
- break
-
- if (epoch + 1) % args.checkpoint_save_epochs == 0:
- # Save the lora layers
- unet = unet.to(jt.float32)
- unet_lora_state_dict = convert_state_dict_to_diffusers(get_peft_model_state_dict(unet))
-
- base_dir, style_dir = os.path.split(args.output_dir)
- style_output_dir = os.path.join(base_dir + f"_{epoch + 1}epoch", style_dir)
- print("style_output_dir:", style_output_dir)
- if style_output_dir is not None:
- os.makedirs(style_output_dir, exist_ok=True)
- text_encoder_state_dict = None
- LoraLoaderMixin.save_lora_weights(
- save_directory=style_output_dir,
- unet_lora_layers=unet_lora_state_dict,
- text_encoder_lora_layers=text_encoder_state_dict,
- safe_serialization=False
- )
-
- record_dir = "/".join(args.output_dir.split("/")[:-2])
- style_number = args.output_dir.split("_")[-1]
- print(f"record_dir: {record_dir}")
- np.save(os.path.join(record_dir, f'losses_{style_number}.npy'), np.array(losses_list))
- np.save(os.path.join(record_dir, f'lr_{style_number}.npy'), np.array(lr_list))
-
-
- if __name__ == "__main__":
- args = parse_args()
- main(args)
|