#!/usr/bin/python #coding=utf-8 ''' If there are Chinese comments in the code,please add at the beginning: #!/usr/bin/python #coding=utf-8 数据集结构是: MnistDataset_torch.zip ├── test └── train 预训练模型文件夹结构是: Torch_MNIST_Example_Model ├── mnist_epoch1.pkl ''' from model import Model import numpy as np import torch from torchvision.datasets import mnist from torch.nn import CrossEntropyLoss from torch.optim import SGD from torch.utils.data import DataLoader from torchvision.transforms import ToTensor import argparse import os #导入c2net包 from c2net.context import prepare # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--epoch_size', type=int, default=10, help='how much epoch to train') parser.add_argument('--batch_size', type=int, default=256, help='how much batch_size in epoch') # 参数声明 WORKERS = 0 # dataloder线程数 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = Model().to(device) optimizer = SGD(model.parameters(), lr=1e-1) cost = CrossEntropyLoss() # 模型训练 def train(model, train_loader, epoch): model.train() train_loss = 0 for i, data in enumerate(train_loader, 0): x, y = data x = x.to(device) y = y.to(device) optimizer.zero_grad() y_hat = model(x) loss = cost(y_hat, y) loss.backward() optimizer.step() train_loss += loss loss_mean = train_loss / (i+1) print('Train Epoch: {}\t Loss: {:.6f}'.format(epoch, loss_mean.item())) # 模型测试 def test(model, test_loader, test_data): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for i, data in enumerate(test_loader, 0): x, y = data x = x.to(device) y = y.to(device) optimizer.zero_grad() y_hat = model(x) test_loss += cost(y_hat, y).item() pred = y_hat.max(1, keepdim=True)[1] correct += pred.eq(y.view_as(pred)).sum().item() test_loss /= (i+1) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_data), 100. * correct / len(test_data))) if __name__ == '__main__': args, unknown = parser.parse_known_args() #初始化导入数据集和预训练模型到容器内 c2net_context = prepare() #获取数据集路径 MnistDataset_torch_path = c2net_context.dataset_path+"/"+"MnistDataset_torch" #获取预训练模型路径 Torch_MNIST_Example_Model_path = c2net_context.pretrain_model_path+"/"+"Torch_MNIST_Example_Model" #log output print('cuda is available:{}'.format(torch.cuda.is_available())) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") batch_size = args.batch_size epochs = args.epoch_size train_dataset = mnist.MNIST(root=os.path.join(MnistDataset_torch_path, "train"), train=True, transform=ToTensor(),download=False) test_dataset = mnist.MNIST(root=os.path.join(MnistDataset_torch_path, "test"), train=False, transform=ToTensor(),download=False) train_loader = DataLoader(train_dataset, batch_size=batch_size) test_loader = DataLoader(test_dataset, batch_size=batch_size) #如果有保存的模型,则加载模型,并在其基础上继续训练 if os.path.exists(os.path.join(Torch_MNIST_Example_Model_path, "mnist_epoch1.pkl")): checkpoint = torch.load(os.path.join(Torch_MNIST_Example_Model_path, "mnist_epoch1.pkl")) model.load_state_dict(checkpoint['model']) optimizer.load_state_dict(checkpoint['optimizer']) start_epoch = checkpoint['epoch'] print('加载 epoch {} 权重成功!'.format(start_epoch)) else: start_epoch = 0 print('无保存模型,将从头开始训练!') for epoch in range(start_epoch+1, epochs+1): train(model, train_loader, epoch) test(model, test_loader, test_dataset) # 将模型保存到c2net_context.output_path state = {'model':model.state_dict(), 'optimizer':optimizer.state_dict(), 'epoch':epoch} torch.save(state, '{}/mnist_epoch{}.pkl'.format(c2net_context.output_path, epoch))