You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 3.9 kB

2 years ago
2 years ago
1 year ago
2 years ago
1 year ago
2 years ago
2 years ago
2 years ago
1 year ago
2 years ago
1 year ago
2 years ago
1 year ago
2 years ago
2 years ago
1 year ago
2 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697
  1. """
  2. 示例选用的数据集是MNISTData.zip
  3. 数据集结构是:
  4. MNISTData.zip
  5. ├── test
  6. │ ├── t10k-images-idx3-ubyte
  7. │ └── t10k-labels-idx1-ubyte
  8. └── train
  9. ├── train-images-idx3-ubyte
  10. └── train-labels-idx1-ubyte
  11. 使用注意事项:
  12. 1、在代码中加入args, unknown = parser.parse_known_args(),可忽略掉--ckpt_url参数报错等参数问题
  13. 2、用户需要调用c2net的python sdk包
  14. """
  15. import os
  16. os.system("pip install c2net-beta -i https://pypi.tuna.tsinghua.edu.cn/simple")
  17. import argparse
  18. from config import mnist_cfg as cfg
  19. from dataset import create_dataset
  20. from lenet import LeNet5
  21. import mindspore.nn as nn
  22. from mindspore import context
  23. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  24. from mindspore import load_checkpoint, load_param_into_net
  25. from mindspore.train import Model
  26. import time
  27. #导入c2net包
  28. from c2net.context import prepare, upload_output
  29. parser = argparse.ArgumentParser(description='MindSpore Lenet Example')
  30. parser.add_argument(
  31. '--device_target',
  32. type=str,
  33. default="Ascend",
  34. choices=['Ascend', 'CPU'],
  35. help='device where the code will be implemented (default: Ascend),if to use the CPU on the Qizhi platform:device_target=CPU')
  36. parser.add_argument('--epoch_size',
  37. type=int,
  38. default=5,
  39. help='Training epochs.')
  40. if __name__ == "__main__":
  41. ###请在代码中加入args, unknown = parser.parse_known_args(),可忽略掉--ckpt_url参数报错等参数问题
  42. args, unknown = parser.parse_known_args()
  43. #初始化导入数据集和预训练模型到容器内
  44. c2net_context = prepare()
  45. #获取数据集路径
  46. mnistdata_path = c2net_context.dataset_path+"/"+"MNISTData"
  47. #获取预训练模型路径
  48. mnist_example_test2_model_djts_path = c2net_context.pretrain_model_path+"/"+"MNIST_Example_test2_model_djts"
  49. #获取输出路径
  50. output_path = c2net_context.output_path
  51. context.set_context(mode=context.GRAPH_MODE,device_target=args.device_target)
  52. #使用数据集的方式
  53. ds_train = create_dataset(os.path.join(mnistdata_path, "train"), cfg.batch_size)
  54. network = LeNet5(cfg.num_classes)
  55. net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
  56. net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
  57. time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
  58. load_param_into_net(network, load_checkpoint(os.path.join(mnist_example_test2_model_djts_path, "checkpoint_lenet-1_1875.ckpt")))
  59. if args.device_target != "Ascend":
  60. model = Model(network,
  61. net_loss,
  62. net_opt,
  63. metrics={"accuracy"})
  64. else:
  65. model = Model(network,
  66. net_loss,
  67. net_opt,
  68. metrics={"accuracy"},
  69. amp_level="O2")
  70. config_ck = CheckpointConfig(
  71. save_checkpoint_steps=cfg.save_checkpoint_steps,
  72. keep_checkpoint_max=cfg.keep_checkpoint_max)
  73. #将模型保存到c2net_context.output_path
  74. outputDirectory = output_path + "/"
  75. ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet",
  76. directory=outputDirectory,
  77. config=config_ck)
  78. print("============== Starting Training ==============")
  79. epoch_size = cfg['epoch_size']
  80. if (args.epoch_size):
  81. epoch_size = args.epoch_size
  82. print('epoch_size is: ', epoch_size)
  83. model.train(epoch_size, ds_train,callbacks=[time_cb, ckpoint_cb,LossMonitor()])
  84. ###上传训练结果到启智平台,注意必须将要输出的模型存储在c2net_context.output_path
  85. upload_output()

No Description