You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_tensorflow_parser.cc 130 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <gtest/gtest.h>
  17. #define protected public
  18. #define private public
  19. #include "parser/common/op_parser_factory.h"
  20. #include "parser/tensorflow/tensorflow_parser.h"
  21. #include "graph/operator_reg.h"
  22. #include "register/op_registry.h"
  23. #include "external/register/register.h"
  24. #include "parser/common/register_tbe.h"
  25. #include "st/parser_st_utils.h"
  26. #include "tests/depends/ops_stub/ops_stub.h"
  27. #include "parser/common/acl_graph_parser_util.h"
  28. #include "metadef/third_party/graphengine/inc/external/ge/ge_api_types.h"
  29. #include "omg/parser/parser_factory.h"
  30. #include "common/pre_checker.h"
  31. #include "common/util.h"
  32. #include "external/parser/tensorflow_parser.h"
  33. #include "parser/tensorflow/tensorflow_constant_parser.h"
  34. #include "common/types.h"
  35. #include "parser/common/op_def/variable_op.h"
  36. #include "parser/tensorflow/tensorflow_ref_switch_parser.h"
  37. #include "parser/tensorflow/tensorflow_fusion_op_parser.h"
  38. #include "parser/tensorflow/tensorflow_auto_mapping_parser_adapter.h"
  39. #include "parser/common/op_def/arg_op.h"
  40. #include "parser/tensorflow/tensorflow_fusion_custom_parser_adapter.h"
  41. #include "parser/tensorflow/tensorflow_reshape_parser.h"
  42. #include "parser/tensorflow/tensorflow_custom_parser_adapter.h"
  43. #include "parser/tensorflow/tensorflow_squeeze_parser.h"
  44. #include "parser/tensorflow/graph_functiondef.h"
  45. #include "parser/tensorflow/graph_optimizer.h"
  46. #include "cce/dnn_base_def.hpp"
  47. #include "parser/tensorflow/scope/scope_pass_manager.h"
  48. #include "parser/tensorflow/tensorflow_util.h"
  49. #include "compute_graph_impl.h"
  50. #include "parser/tensorflow/tensorflow_enter_parser.h"
  51. #include "parser/common/op_def/ir_pb_converter.h"
  52. #include "parser/common/tuple.h"
  53. #include "common/op_def/frameworkop_op.h"
  54. #include "common/op_def/shape_n_op.h"
  55. #include "common/op_def/var_is_initialized_op_op.h"
  56. #include "common/op_def/fill_op.h"
  57. #include "common/convert/pb2json.h"
  58. #include "common/convert/message2operator.h"
  59. #undef protected
  60. #undef private
  61. using namespace std;
  62. using namespace domi::tensorflow;
  63. using namespace domi;
  64. using namespace cce;
  65. using namespace testing;
  66. using namespace std;
  67. using namespace google::protobuf;
  68. static const string GRAPH_DEFAULT_NAME = "default";
  69. namespace ge {
  70. class STestTensorflowParser : public testing::Test {
  71. protected:
  72. void SetUp() {
  73. ParerSTestsUtils::ClearParserInnerCtx();
  74. }
  75. void TearDown() {}
  76. public:
  77. void RegisterCustomOp();
  78. };
  79. class TestOperator : public ParserOperator
  80. {
  81. public:
  82. TestOperator()
  83. : ParserOperator("test")
  84. {
  85. }
  86. ~TestOperator()
  87. {
  88. }
  89. };
  90. class ScopeTestPass : public ScopeBasePass {
  91. protected:
  92. vector<ScopeFusionPatterns> DefinePatterns() {
  93. vector<ScopeFusionPatterns> patterns_list;
  94. return patterns_list;
  95. };
  96. string PassName() {
  97. return "test";
  98. };
  99. Status LastMatchScopesAndOPs(shared_ptr<ScopeGraph> &scope_graph, vector<ScopesResult> &results) {
  100. return domi::SUCCESS;
  101. };
  102. void GenerateFusionResult(const vector<Scope *> &scopes, FusionScopesResult *fusion_rlt) {
  103. return;
  104. };
  105. };
  106. static Status ParseParams(const google::protobuf::Message* op_src, ge::Operator& op_dest) {
  107. return SUCCESS;
  108. }
  109. static Status ParseParamByOpFunc(const ge::Operator &op_src, ge::Operator& op_dest) {
  110. return SUCCESS;
  111. }
  112. void STestTensorflowParser::RegisterCustomOp() {
  113. REGISTER_CUSTOM_OP("Add")
  114. .FrameworkType(domi::TENSORFLOW)
  115. .OriginOpType("Add")
  116. .ParseParamsFn(ParseParams);
  117. std::vector<OpRegistrationData> reg_datas = domi::OpRegistry::Instance()->registrationDatas;
  118. for (auto reg_data : reg_datas) {
  119. OpRegistrationTbe::Instance()->Finalize(reg_data);
  120. domi::OpRegistry::Instance()->Register(reg_data);
  121. }
  122. domi::OpRegistry::Instance()->registrationDatas.clear();
  123. }
  124. namespace {
  125. NodeDef* AddNode(GraphDef& graph, string type, string name) {
  126. NodeDef* nodeDef = graph.add_node();
  127. nodeDef->set_op(type);
  128. nodeDef->set_name(name);
  129. tensorflow::OpDef op_def;
  130. string op_def_string;
  131. op_def.SerializeToString(&op_def_string);
  132. tensorflow::AttrValue value;
  133. value.set_s(op_def_string);
  134. nodeDef->mutable_attr()->insert({"op_def", value});
  135. return nodeDef;
  136. }
  137. void AddInput(NodeDef* src, NodeDef* dst, int srcIndex) {
  138. if(srcIndex == -1){
  139. dst->add_input("^"+src->name());
  140. } else {
  141. if (srcIndex == 0) {
  142. dst->add_input(src->name());
  143. } else {
  144. dst->add_input(src->name() + ":" + std::to_string(srcIndex));
  145. }
  146. {
  147. auto input = (*dst->mutable_attr())[ge::ATTR_NAME_INPUT_TENSOR_DESC].mutable_list()->add_func();
  148. tensorflow::AttrValue val1;
  149. val1.set_i(0);
  150. (*input->mutable_attr())["serialize_format"] = val1;
  151. tensorflow::AttrValue val2;
  152. val2.set_i(tensorflow::DT_FLOAT);
  153. (*input->mutable_attr())["serialize_datatype"] = val2;
  154. tensorflow::AttrValue val3;
  155. val3.mutable_list()->add_i(10);
  156. (*input->mutable_attr())["serialize_shape"] = val3;
  157. }
  158. {
  159. auto output = (*src->mutable_attr())[ge::ATTR_NAME_OUTPUT_TENSOR_DESC].mutable_list()->add_func();
  160. tensorflow::AttrValue val1;
  161. val1.set_i(0);
  162. (*output->mutable_attr())["serialize_format"] = val1;
  163. tensorflow::AttrValue val2;
  164. val2.set_i(tensorflow::DT_FLOAT);
  165. (*output->mutable_attr())["serialize_datatype"] = val2;
  166. tensorflow::AttrValue val3;
  167. val3.mutable_list()->add_i(10);
  168. (*output->mutable_attr())["serialize_shape"] = val3;
  169. }
  170. }
  171. }
  172. NodeDef *initNodeDef() {
  173. NodeDef * nodeDef = new NodeDef();
  174. nodeDef->set_op("Const");
  175. ::google::protobuf::Map<std::string, tensorflow::AttrValue >* node_attr_map = nodeDef->mutable_attr();
  176. //设置 T属性
  177. domi::tensorflow::AttrValue t_attr_value;
  178. t_attr_value.set_type(domi::tensorflow::DT_INT32);
  179. (*node_attr_map)[TENSORFLOW_ATTR_T] = t_attr_value;
  180. domi::tensorflow::AttrValue dtype_attr_value;
  181. dtype_attr_value.set_type(domi::tensorflow::DT_INT32);
  182. (*node_attr_map)[TENSORFLOW_ATTR_DTYPE] = dtype_attr_value;
  183. // out_put
  184. domi::tensorflow::AttrValue outputs_attr_value;
  185. ::tensorflow::AttrValue_ListValue* list = outputs_attr_value.mutable_list();
  186. list->add_s("MatMul");
  187. (*node_attr_map)[TENSORFLOW_ATTR_OUTPUT_OP] = outputs_attr_value;
  188. // 设置 tensor 属性
  189. domi::tensorflow::AttrValue value_attr_value;
  190. tensorflow::TensorProto* tensor = value_attr_value.mutable_tensor();
  191. tensorflow::TensorShapeProto* tensor_shape = tensor->mutable_tensor_shape();
  192. tensor_shape->clear_dim();
  193. tensor_shape->add_dim()->set_size(4);
  194. tensor_shape->add_dim()->set_size(6);
  195. tensor->set_dtype(domi::tensorflow::DT_INT32);
  196. float *addr = new float[24];
  197. for (int32_t i = 0; i < 24; i++) {
  198. *(addr + i) = 1.0 + i;
  199. }
  200. tensor->set_tensor_content((void *)addr, 24 * sizeof(float));
  201. (*node_attr_map)[TENSORFLOW_ATTR_VALUE] = value_attr_value;
  202. delete[] addr;
  203. return nodeDef;
  204. }
  205. NodeDef * initOpNodeDef_VariableV2() {
  206. NodeDef * nodeDef = new NodeDef();
  207. nodeDef->set_op("VariableV2");
  208. google::protobuf::Map<std::string, tensorflow::AttrValue > *node_attr_map = nodeDef->mutable_attr();
  209. //设置data_format属性
  210. domi::tensorflow::AttrValue format_attr_value;
  211. format_attr_value.set_s("_FZ");
  212. (*node_attr_map)[VAR_ATTR_FORMAT] = format_attr_value;
  213. domi::tensorflow::AttrValue type_attr;
  214. type_attr.set_type(domi::tensorflow::DT_FLOAT);
  215. (*node_attr_map)[VAR_ATTR_DTYPE] = type_attr;
  216. domi::tensorflow::AttrValue container_attr_value;
  217. container_attr_value.set_s("container");
  218. (*node_attr_map)[VAR_ATTR_CONTAINER] = container_attr_value;
  219. domi::tensorflow::AttrValue shard_name_attr_value;
  220. shard_name_attr_value.set_s("shard_name");
  221. (*node_attr_map)[VAR_ATTR_SHARED_NAME] = shard_name_attr_value;
  222. domi::tensorflow::AttrValue shape_attr_value;
  223. shape_attr_value.mutable_shape()->add_dim()->set_size(1);
  224. shape_attr_value.mutable_shape()->add_dim()->set_size(2);
  225. shape_attr_value.mutable_shape()->add_dim()->set_size(3);
  226. shape_attr_value.mutable_shape()->add_dim()->set_size(4);
  227. (*node_attr_map)[ge::VAR_ATTR_SHAPE] = shape_attr_value;
  228. domi::tensorflow::AttrValue shape;
  229. shape.mutable_list()->add_i((int64)32);
  230. shape.mutable_list()->add_i((int64)32);
  231. shape.mutable_list()->add_i((int64)14);
  232. shape.mutable_list()->add_i((int64)14);
  233. //设置data_format属性
  234. domi::tensorflow::AttrValue df_attr_value;
  235. domi::tensorflow::AttrValue df_attr_value2;
  236. df_attr_value2.set_s(TENSORFLOWF_TENSOR_NHWC);
  237. df_attr_value.set_i((int64_t)ccTensorFormat_t::CC_TENSOR_NHWC);
  238. (*node_attr_map)[TENSORFLOW_ATTR_DATA_FORMAT] = df_attr_value2;
  239. //设置padding属性
  240. domi::tensorflow::AttrValue pad_attr_value;
  241. domi::tensorflow::AttrValue pad_attr_value2;
  242. pad_attr_value2.set_s(TENSORFLOWF_OP_PADDING_SAME);
  243. (*node_attr_map)[TENSORFLOW_ATTR_PADDING] = pad_attr_value2;
  244. pad_attr_value.set_i((int64_t)tensorflow::DT_FLOAT);
  245. domi::tensorflow::NameAttrList name_attr_list;
  246. name_attr_list.set_name(std::to_string(0));
  247. name_attr_list.mutable_attr()->insert({"serialize_shape", shape});
  248. name_attr_list.mutable_attr()->insert({"serialize_format", df_attr_value});
  249. name_attr_list.mutable_attr()->insert({"serialize_datatype", pad_attr_value});
  250. domi::tensorflow::AttrValue output_tensor_descs;
  251. *(output_tensor_descs.mutable_list()->add_func()) = name_attr_list;
  252. nodeDef->mutable_attr()->insert({ge::ATTR_NAME_OUTPUT_TENSOR_DESC, output_tensor_descs});
  253. return nodeDef;
  254. }
  255. NodeDef *initOpNodeDef_TemporaryVariable() {
  256. NodeDef * nodeDef = new NodeDef();
  257. nodeDef->set_op("TemporaryVariable");
  258. google::protobuf::Map<std::string, tensorflow::AttrValue> *node_attr_map = nodeDef->mutable_attr();
  259. //设置dtype属性
  260. domi::tensorflow::AttrValue type_attr;
  261. type_attr.set_type(domi::tensorflow::DT_FLOAT);
  262. (*node_attr_map)[VAR_ATTR_DTYPE] = type_attr;
  263. //设置var_name属性
  264. domi::tensorflow::AttrValue var_name_attr_value;
  265. var_name_attr_value.set_s("temporary_variable_name");
  266. (*node_attr_map)[ge::VAR_ATTR_NAME] = var_name_attr_value;
  267. //设置shape属性
  268. domi::tensorflow::AttrValue shape_attr_value;
  269. shape_attr_value.mutable_shape()->add_dim()->set_size(1);
  270. shape_attr_value.mutable_shape()->add_dim()->set_size(2);
  271. shape_attr_value.mutable_shape()->add_dim()->set_size(3);
  272. shape_attr_value.mutable_shape()->add_dim()->set_size(4);
  273. (*node_attr_map)[ge::VAR_ATTR_SHAPE] = shape_attr_value;
  274. domi::tensorflow::AttrValue shape;
  275. shape.mutable_list()->add_i((int64)32);
  276. shape.mutable_list()->add_i((int64)32);
  277. shape.mutable_list()->add_i((int64)14);
  278. shape.mutable_list()->add_i((int64)14);
  279. //设置data_format属性
  280. domi::tensorflow::AttrValue df_attr_value2;
  281. df_attr_value2.set_s(TENSORFLOWF_TENSOR_NHWC);
  282. (*node_attr_map)[TENSORFLOW_ATTR_DATA_FORMAT] = df_attr_value2;
  283. domi::tensorflow::AttrValue df_attr_value;
  284. df_attr_value.set_i((int64_t)ccTensorFormat_t::CC_TENSOR_NHWC);
  285. //设置padding属性
  286. domi::tensorflow::AttrValue pad_attr_value2;
  287. pad_attr_value2.set_s(TENSORFLOWF_OP_PADDING_SAME);
  288. (*node_attr_map)[TENSORFLOW_ATTR_PADDING] = pad_attr_value2;
  289. domi::tensorflow::AttrValue pad_attr_value;
  290. pad_attr_value.set_i((int64_t)tensorflow::DT_FLOAT);
  291. domi::tensorflow::NameAttrList name_attr_list;
  292. name_attr_list.set_name(std::to_string(0));
  293. name_attr_list.mutable_attr()->insert({"serialize_shape", shape});
  294. name_attr_list.mutable_attr()->insert({"serialize_format", df_attr_value});
  295. name_attr_list.mutable_attr()->insert({"serialize_datatype", pad_attr_value});
  296. domi::tensorflow::AttrValue output_tensor_descs;
  297. *(output_tensor_descs.mutable_list()->add_func()) = name_attr_list;
  298. nodeDef->mutable_attr()->insert({ge::ATTR_NAME_OUTPUT_TENSOR_DESC, output_tensor_descs});
  299. return nodeDef;
  300. }
  301. NodeDef *fusioninitNodeDef(int index) {
  302. NodeDef *nodeDef = new NodeDef();
  303. google::protobuf::Map<std::string, tensorflow::AttrValue> *node_attr_map = nodeDef->mutable_attr();
  304. //设置 type属性
  305. domi::tensorflow::AttrValue dtype_attr_value ;
  306. if (index == 0) {
  307. dtype_attr_value.set_type(domi::tensorflow::DT_FLOAT);
  308. } else if (index == 1) {
  309. dtype_attr_value.set_type(domi::tensorflow::DT_INT32);
  310. } else if (index == 2) {
  311. dtype_attr_value.set_type(tensorflow::DT_HALF);
  312. }
  313. (*node_attr_map)[ge::TENSORFLOW_ATTR_DTYPE] = dtype_attr_value;
  314. //设置data_format属性
  315. domi::tensorflow::AttrValue df_attr_value;
  316. df_attr_value.set_s(TENSORFLOWF_TENSOR_NCHW);
  317. (*node_attr_map)[TENSORFLOW_ATTR_DATA_FORMAT] = df_attr_value;
  318. // 设置 tensor 属性
  319. domi::tensorflow::AttrValue value_attr_value;
  320. ::tensorflow::TensorProto* tensor = value_attr_value.mutable_tensor();
  321. ::tensorflow::TensorShapeProto* tensor_shape = tensor->mutable_tensor_shape();
  322. tensor_shape->clear_dim();
  323. ::tensorflow::TensorShapeProto_Dim* dim = tensor_shape->add_dim();
  324. dim->set_name("tensor dim");
  325. dim->set_size(1);
  326. if (index == 0) {
  327. tensor->set_dtype(domi::tensorflow::DT_FLOAT);
  328. float *addr = new float[1];
  329. *addr = 1.0;
  330. tensor->set_tensor_content((void *)addr, sizeof(float));
  331. (*node_attr_map)[TENSORFLOW_ATTR_VALUE] = value_attr_value;
  332. delete[] addr;
  333. } else if (index == 1) {
  334. tensor->set_dtype(domi::tensorflow::DT_INT32);
  335. int32_t *addr = new int32_t[1];
  336. *addr = 1;
  337. tensor->set_tensor_content((void *)addr, sizeof(int32_t));
  338. (*node_attr_map)[TENSORFLOW_ATTR_VALUE] = value_attr_value;
  339. delete[] addr;
  340. } else if (index == 2) {
  341. tensor->set_dtype(tensorflow::DT_HALF);
  342. tensor->add_half_val(1);
  343. (*node_attr_map)[TENSORFLOW_ATTR_VALUE] = value_attr_value;
  344. }
  345. return nodeDef;
  346. }
  347. NodeDef *MallocNodeDef(const string &name, const string &type) {
  348. NodeDef* node_def = new (std::nothrow) NodeDef();
  349. if (node_def != nullptr) {
  350. node_def->set_name(name);
  351. node_def->set_op(type);
  352. }
  353. return node_def;
  354. }
  355. void GenOriginNodeDef(ge::TensorFlowModelParser *tensorflow_parser, vector<string> &node_name_list) {
  356. NodeDef* pre_node_a = MallocNodeDef("pre_node_a", "Const");
  357. EXPECT_NE(pre_node_a, nullptr);
  358. {
  359. google::protobuf::Map< ::std::string, ::tensorflow::AttrValue >* node_attr_map = pre_node_a->mutable_attr();
  360. tensorflow::AttrValue attr_dtype;
  361. attr_dtype.set_type(tensorflow::DT_FLOAT);
  362. (*node_attr_map)["dtype"] = attr_dtype;
  363. tensorflow::AttrValue attr_value;
  364. tensorflow::TensorProto* tensor = attr_value.mutable_tensor();
  365. tensor->add_bool_val(true);
  366. tensor->set_dtype(tensorflow::DT_BOOL);
  367. (*node_attr_map)["value"] = attr_value;
  368. }
  369. tensorflow_parser->nodedef_map_["pre_node_a"] = pre_node_a;
  370. node_name_list.push_back("pre_node_a");
  371. NodeDef* pre_node_ctrl_in = MallocNodeDef("pre_node_ctrl_in", "Const");
  372. EXPECT_NE(pre_node_ctrl_in, nullptr);
  373. {
  374. ::google::protobuf::Map< ::std::string, ::tensorflow::AttrValue >* node_attr_map = pre_node_ctrl_in->mutable_attr();
  375. tensorflow::AttrValue attr_dtype;
  376. attr_dtype.set_type(tensorflow::DT_FLOAT);
  377. (*node_attr_map)["dtype"] = attr_dtype;
  378. tensorflow::AttrValue attr_value;
  379. tensorflow::TensorProto* tensor = attr_value.mutable_tensor();
  380. tensor->add_bool_val(true);
  381. tensor->set_dtype(tensorflow::DT_BOOL);
  382. (*node_attr_map)["value"] = attr_value;
  383. }
  384. tensorflow_parser->nodedef_map_["pre_node_ctrl_in"] = pre_node_ctrl_in;
  385. node_name_list.push_back("pre_node_ctrl_in");
  386. NodeDef* post_node_b = MallocNodeDef("post_node_b", "Identity");
  387. EXPECT_NE(post_node_b, nullptr);
  388. tensorflow_parser->nodedef_map_["post_node_b"] = post_node_b;
  389. node_name_list.push_back("post_node_b");
  390. NodeDef* post_node_c = MallocNodeDef("post_node_c", "Identity");
  391. EXPECT_NE(post_node_c, nullptr);
  392. tensorflow_parser->nodedef_map_["post_node_c"] = post_node_c;
  393. node_name_list.push_back("post_node_c");
  394. NodeDef* post_node_d = MallocNodeDef("post_node_d", "Identity");
  395. EXPECT_NE(post_node_d, nullptr);
  396. tensorflow_parser->nodedef_map_["post_node_d"] = post_node_d;
  397. node_name_list.push_back("post_node_d");
  398. }
  399. void FreeNodeDefMap(ge::TensorFlowModelParser *tensorflow_parser, set<string> &malloc_node_name_list) {
  400. for (auto &item : tensorflow_parser->nodedef_map_) {
  401. if (item.second != nullptr && malloc_node_name_list.count(item.first) > 0) {
  402. delete (item.second);
  403. item.second = nullptr;
  404. }
  405. }
  406. }
  407. void GenFusionScopesResult(shared_ptr<ScopeGraph> &scope_graph, FusionScopesResult *fusion_rlt,
  408. const string &fusion_op_name) {
  409. if (fusion_rlt == nullptr) {
  410. return;
  411. }
  412. fusion_rlt->InsertInputs("scope_node_1", {0}); // scope input 0
  413. fusion_rlt->InsertOutputs("scope_node_m", {0}); // scope output 0
  414. fusion_rlt->InsertOutputs("scope_node_n", {1}); // scope output 1
  415. fusion_rlt->SetType(ge::kScopeToMultiNodes);
  416. fusion_rlt->SetName(fusion_op_name);
  417. fusion_rlt->SetDescription("Description for fusion node");
  418. // Add inner nodes in sequence.
  419. auto node1 = fusion_rlt->AddInnerNode("inner_node_1", "Unique"); // add inner node1
  420. CHECK_INNER_NODE_CONDITION(node1 != nullptr, fusion_rlt);
  421. auto ret = node1
  422. ->InsertInput(ge::kInputFromFusionScope, 0) // Input from 0th of boundary (a)
  423. .InsertOutput(ge::kOutputToFusionScope, 0) // Output to 0th of boundary (b)
  424. .InsertOutput("inner_node_2", 0) // Output to input 0th of internal node 2
  425. .BuildInnerNode(); // Construct an internal Operator
  426. CHECK_INNER_NODE_CONDITION(ret == ge::GRAPH_SUCCESS, fusion_rlt);
  427. string str_val = "This is a string.";
  428. node1->MutableOperator()->SetAttr("key1", 2); // Set integer attribute
  429. node1->MutableOperator()->SetAttr("key2", str_val); // Set the string attribute
  430. node1->MutableOperator()->SetAttr("key3", true); // Set boolean attribute
  431. auto node2 = fusion_rlt->AddInnerNode("inner_node_2", "Identity"); // add inner node2
  432. CHECK_INNER_NODE_CONDITION(node2 != nullptr, fusion_rlt);
  433. ret = node2
  434. ->InsertInput("inner_node_1", 1) // The input comes from the 1st output of internal node 1
  435. .InsertOutput("inner_node_3", 0) // Output to input 0th of internal node 3
  436. .BuildInnerNode();
  437. CHECK_INNER_NODE_CONDITION(ret == ge::GRAPH_SUCCESS, fusion_rlt);
  438. node2->SetInputFormat("x", "NHWC");
  439. node2->SetOutputFormat("y", "NHWC");
  440. auto node3 = fusion_rlt->AddInnerNode("inner_node_3", "Identity"); // add inner node3
  441. CHECK_INNER_NODE_CONDITION(node3 != nullptr, fusion_rlt);
  442. ret = node3
  443. ->InsertInput("inner_node_2", 0) // The input comes from the 0th output of internal node 2
  444. .InsertOutput(ge::kOutputToFusionScope, 1) // Output to 1st of boundary (c)
  445. .BuildInnerNode();
  446. CHECK_INNER_NODE_CONDITION(ret == ge::GRAPH_SUCCESS, fusion_rlt);
  447. scope_graph->impl_->AddFusionScopesResult(fusion_rlt);
  448. }
  449. void GenOriginContext(ge::TensorFlowModelParser *tensorflow_parser, const string &fusion_op_name) {
  450. // op_node_context for fusion op
  451. ge::OpNodeContext op_node_context;
  452. op_node_context.input_map["pre_node_a"].push_back({0, 0});
  453. op_node_context.input_map["pre_node_ctrl_in"].push_back({-1, -1}); // ctrl edges
  454. op_node_context.output_map["post_node_b"].push_back({0, 0});
  455. op_node_context.output_map["post_node_c"].push_back({1, 0});
  456. op_node_context.output_map["post_node_d"].push_back({-1, -1});
  457. op_node_context.output_map["_Retval"].push_back({0, 1});
  458. // ctrl edges
  459. tensorflow_parser->op_node_context_map_[fusion_op_name] = op_node_context;
  460. tensorflow_parser->SaveEdgesControlInfo(fusion_op_name, -1);
  461. // op_node_context for pre_node_a
  462. ge::OpNodeContext op_node_context_a;
  463. op_node_context_a.output_map[fusion_op_name].push_back({0, 0});
  464. tensorflow_parser->op_node_context_map_["pre_node_a"] = op_node_context_a;
  465. // op_node_context for pre_node_ctrl_in
  466. ge::OpNodeContext op_node_context_ctrl_in;
  467. op_node_context_ctrl_in.output_map[fusion_op_name].push_back({-1, -1}); // ctrl edges
  468. tensorflow_parser->op_node_context_map_["pre_node_ctrl_in"] = op_node_context_ctrl_in;
  469. // op_node_context for post_node_b
  470. ge::OpNodeContext op_node_context_b;
  471. op_node_context_b.input_map[fusion_op_name].push_back({0, 0});
  472. tensorflow_parser->op_node_context_map_["post_node_b"] = op_node_context_b;
  473. // op_node_context for post_node_c
  474. ge::OpNodeContext op_node_context_c;
  475. op_node_context_c.output_map["post_node_d"].push_back({0, 0});
  476. tensorflow_parser->op_node_context_map_["post_node_c"] = op_node_context_c;
  477. // op_node_context for post_node_d
  478. ge::OpNodeContext op_node_context_d;
  479. op_node_context_d.input_map[fusion_op_name].push_back({-1, -1}); // ctrl edges
  480. tensorflow_parser->op_node_context_map_["post_node_d"] = op_node_context_d;
  481. // op_node_context for Retval
  482. ge::OpNodeContext op_node_context_Retval;
  483. op_node_context_d.input_map["post_node_d"].push_back({-1, -1});
  484. op_node_context_c.output_map["fusion_op_name"].push_back({0,1});
  485. tensorflow_parser->op_node_context_map_["_Retval"] = op_node_context_Retval;
  486. tensorflow_parser->SaveEdgesControlInfo("op_node_context_Retval", -1);
  487. string fusion_op_type = ge::kScopeToMultiNodes;
  488. string description = "fusion op description";
  489. tensorflow_parser->fusion_op_type_map_[fusion_op_name].push_back(fusion_op_type);
  490. tensorflow_parser->fusion_op_type_map_[fusion_op_name].push_back(description);
  491. }
  492. void register_tbe_op() {
  493. std::vector<OpRegistrationData> registrationDatas = OpRegistry::Instance()->registrationDatas;
  494. for (OpRegistrationData reg_data : registrationDatas) {
  495. OpRegistrationTbe::Instance()->Finalize(reg_data);
  496. OpRegistry::Instance()->Register(reg_data);
  497. }
  498. OpRegistry::Instance()->registrationDatas.clear();
  499. }
  500. NodeDef *initNodeDef_axis_dims() {
  501. NodeDef *nodeDef = new NodeDef();
  502. google::protobuf::Map<std::string, tensorflow::AttrValue> *node_attr_map = nodeDef->mutable_attr();
  503. //设置T属性
  504. domi::tensorflow::AttrValue dtype_attr_value ;
  505. dtype_attr_value.set_type(domi::tensorflow::DT_FLOAT);
  506. (*node_attr_map)[TENSORFLOW_ATTR_T] = dtype_attr_value;
  507. //设置strides属性
  508. domi::tensorflow::AttrValue axis_attr_value;
  509. ::tensorflow::AttrValue_ListValue* list = axis_attr_value.mutable_list();
  510. list->add_i(1);
  511. list->add_i(2);
  512. (*node_attr_map)[ge::SQUEEZE_ATTR_AXIS] = axis_attr_value;
  513. (*node_attr_map)[ge::SQUEEZE_ATTR_DIMS] = axis_attr_value;
  514. return nodeDef;
  515. }
  516. NodeDef *initNodeDef_dims() {
  517. NodeDef *nodeDef = new NodeDef();
  518. ::google::protobuf::Map<std::string, tensorflow::AttrValue > *node_attr_map = nodeDef->mutable_attr();
  519. //设置T属性
  520. domi::tensorflow::AttrValue dtype_attr_value ;
  521. dtype_attr_value.set_type(domi::tensorflow::DT_FLOAT);
  522. (*node_attr_map)[TENSORFLOW_ATTR_T] = dtype_attr_value;
  523. //设置strides属性
  524. domi::tensorflow::AttrValue axis_attr_value;
  525. ::tensorflow::AttrValue_ListValue* list = axis_attr_value.mutable_list();
  526. list->add_i(1);
  527. list->add_i(2);
  528. (*node_attr_map)[ge::SQUEEZE_ATTR_DIMS] = axis_attr_value;
  529. return nodeDef;
  530. }
  531. void CreateOpDef(const string& _name, const string& _type, ge::OpDescPtr opDef) {
  532. tensorflow::OpDef tsOpDef;
  533. tsOpDef.set_name(_name);
  534. tensorflow::OpDef_ArgDef* outArgDef = tsOpDef.add_output_arg();
  535. outArgDef->set_name(_name);
  536. outArgDef->set_description("outArgDef");
  537. outArgDef->set_type((tensorflow::DataType)3);
  538. if ((_name == "A") || (_name == "B")) {
  539. tensorflow::OpDef_ArgDef* argDef1 = tsOpDef.add_output_arg();
  540. string name = _name+"t";
  541. argDef1->set_name(name);
  542. argDef1->set_description("this is a test 2");
  543. argDef1->set_type((tensorflow::DataType)3);
  544. }
  545. if ((_name == "C") ) {
  546. outArgDef->set_number_attr("num");
  547. }
  548. if ((_name == "D") ) {
  549. outArgDef->set_type_list_attr("type_list");
  550. }
  551. string strTsOpDef;
  552. tsOpDef.SerializeToString(&strTsOpDef);
  553. ge::AttrUtils::SetStr(opDef, "op_def", strTsOpDef);
  554. tensorflow::NodeDef nodedef;
  555. nodedef.set_name(_name);
  556. nodedef.set_op(_name);
  557. string name("op_def");
  558. tensorflow::AttrValue value;
  559. value.set_s(strTsOpDef);
  560. TensorFlowUtil::AddNodeAttr(name, value, &nodedef);
  561. value.set_i(1);
  562. TensorFlowUtil::AddNodeAttr("num", value, &nodedef);
  563. value.mutable_list();
  564. TensorFlowUtil::AddNodeAttr("type_list", value, &nodedef);
  565. string strNodeDef;
  566. nodedef.SerializeToString(&strNodeDef);
  567. ge::GeAttrValue::BYTES nodedefBytes;
  568. nodedefBytes = ge::GeAttrValue::BYTES::CopyFrom((uint8_t*)strNodeDef.data(), strNodeDef.length());
  569. ge::AttrUtils::SetBytes(opDef, "node_def", nodedefBytes);
  570. if ((_name== "S") || (_name == "K")) {
  571. int index = 0;
  572. ge::AttrUtils::SetInt(opDef, "T", 1);
  573. ge::AttrUtils::SetInt(opDef, "arg_index", index);
  574. ge::AttrUtils::SetInt(opDef, "ret_index", index);
  575. }
  576. }
  577. ge::NodePtr AddNode(ge::ComputeGraphPtr graph, const string& _name, const string& _type,int32_t i_n, int32_t o_n) {
  578. ge::OpDescPtr opDef = std::make_shared<ge::OpDesc>();
  579. opDef->SetName(_name);
  580. opDef->SetType(_type);
  581. for(int32_t i = 0; i < i_n; i++) {
  582. ge::GeTensorDesc input;
  583. input.SetDataType((ge::DataType)1);
  584. opDef->AddInputDesc(input);
  585. }
  586. for(int32_t i = 0;i < o_n; i++) {
  587. ge::GeTensorDesc output;
  588. output.SetDataType((ge::DataType)1);
  589. opDef->AddOutputDesc(output);
  590. }
  591. CreateOpDef(_name, _type, opDef);
  592. return graph->AddNode(opDef);
  593. }
  594. void MakeDagGraph(ge::ComputeGraphPtr graph, const string& input_node_type) {
  595. ge::NodePtr node_s = AddNode(graph, "S", parser::DATA,1,1);
  596. ge::NodePtr node_a = AddNode(graph, "A", "testa",1,2);
  597. ge::NodePtr node_b = AddNode(graph, "B", "testb",1,2);
  598. ge::NodePtr node_c = AddNode(graph, "C", "testc",1,1);
  599. ge::NodePtr node_d = AddNode(graph, "D", "testd",1,1);
  600. ge::NodePtr node_e = AddNode(graph, "E", "teste",1,1);
  601. ge::NodePtr node_f = AddNode(graph, "F", "testf",1,1);
  602. ge::NodePtr node_g = AddNode(graph, "G", "testg",2,1);
  603. ge::NodePtr node_h = AddNode(graph, "H", "testh",1,1);
  604. ge::NodePtr node_i = AddNode(graph, "I", "testi",1,1);
  605. ge::NodePtr node_j = AddNode(graph, "J", "testj",2,1);
  606. ge::NodePtr node_k = AddNode(graph, "K", parser::NETOUTPUT,1,1);
  607. ge::GraphUtils::AddEdge(node_s->GetOutDataAnchor(0), node_a->GetInDataAnchor(0));
  608. ge::GraphUtils::AddEdge(node_a->GetOutDataAnchor(0), node_b->GetInDataAnchor(0));
  609. ge::GraphUtils::AddEdge(node_a->GetOutDataAnchor(1), node_c->GetInDataAnchor(0));
  610. ge::GraphUtils::AddEdge(node_b->GetOutDataAnchor(0), node_d->GetInDataAnchor(0));
  611. ge::GraphUtils::AddEdge(node_b->GetOutDataAnchor(1), node_e->GetInDataAnchor(0));
  612. ge::GraphUtils::AddEdge(node_c->GetOutDataAnchor(0), node_g->GetInDataAnchor(0));
  613. ge::GraphUtils::AddEdge(node_d->GetOutDataAnchor(0), node_f->GetInDataAnchor(0));
  614. ge::GraphUtils::AddEdge(node_e->GetOutDataAnchor(0), node_g->GetInDataAnchor(1));
  615. ge::GraphUtils::AddEdge(node_f->GetOutDataAnchor(0), node_h->GetInDataAnchor(0));
  616. ge::GraphUtils::AddEdge(node_g->GetOutDataAnchor(0), node_j->GetInDataAnchor(0));
  617. ge::GraphUtils::AddEdge(node_h->GetOutDataAnchor(0), node_i->GetInDataAnchor(0));
  618. ge::GraphUtils::AddEdge(node_i->GetOutDataAnchor(0), node_j->GetInDataAnchor(1));
  619. ge::GraphUtils::AddEdge(node_j->GetOutDataAnchor(0), node_k->GetInDataAnchor(0));
  620. ge::GraphUtils::AddEdge(node_h->GetOutControlAnchor(), node_j->GetInControlAnchor());
  621. }
  622. void ChangeDataType(tensorflow::NodeDef* node_tf, int32_t data_type)
  623. {
  624. domi::tensorflow::AttrValue input_attr_value;
  625. google::protobuf::Map<std::string, tensorflow::AttrValue>* attr = node_tf->mutable_attr();
  626. google::protobuf::Map<std::string, tensorflow::AttrValue>::const_iterator it = attr->find(ge::ATTR_NAME_INPUT_TENSOR_DESC);
  627. if (it != attr->end()) {
  628. input_attr_value = it->second;
  629. }
  630. (*attr)[ge::ATTR_NAME_INPUT_TENSOR_DESC] = input_attr_value;
  631. }
  632. NodeDef* AddGraphNode(GraphDef *graph, string name, string optype, string input)
  633. {
  634. NodeDef * node_def = graph->add_node();
  635. node_def->set_name(name);
  636. node_def->set_op(optype);
  637. node_def->add_input(input);
  638. return node_def;
  639. }
  640. }
  641. namespace {
  642. REG_OP(Data)
  643. .INPUT(x, TensorType::ALL())
  644. .OUTPUT(y, TensorType::ALL())
  645. .ATTR(index, Int, 0)
  646. .OP_END_FACTORY_REG(Data)
  647. REG_OP(Add)
  648. .INPUT(x1, TensorType({DT_FLOAT, DT_INT32, DT_INT64, DT_FLOAT16, DT_INT16,
  649. DT_INT8, DT_UINT8, DT_DOUBLE, DT_COMPLEX128,
  650. DT_COMPLEX64, DT_STRING}))
  651. .INPUT(x2, TensorType({DT_FLOAT, DT_INT32, DT_INT64, DT_FLOAT16, DT_INT16,
  652. DT_INT8, DT_UINT8, DT_DOUBLE, DT_COMPLEX128,
  653. DT_COMPLEX64, DT_STRING}))
  654. .OUTPUT(y, TensorType({DT_FLOAT, DT_INT32, DT_INT64, DT_FLOAT16, DT_INT16,
  655. DT_INT8, DT_UINT8, DT_DOUBLE, DT_COMPLEX128,
  656. DT_COMPLEX64, DT_STRING}))
  657. .OP_END_FACTORY_REG(Add)
  658. }
  659. static Status FusionParserParams(const std::vector<const google::protobuf::Message *> inside_nodes, ge::Operator &op) {
  660. return domi::SUCCESS;
  661. }
  662. static MemBuffer* MemBufferFromFile(const char *path)
  663. {
  664. char path_temp[PATH_MAX + 1] = {0x00};
  665. if(strlen(path) > PATH_MAX || nullptr == realpath(path, path_temp)) {
  666. return nullptr;
  667. }
  668. FILE *fp = fopen(path_temp, "r+");
  669. if (fp == nullptr) {
  670. return nullptr;
  671. }
  672. // get model file length
  673. if (0 != fseek(fp, 0, SEEK_END)) {
  674. fclose(fp);
  675. return nullptr;
  676. }
  677. long file_length = ftell(fp);
  678. if (fseek(fp, 0, SEEK_SET)) {
  679. fclose(fp);
  680. return nullptr;
  681. }
  682. if (file_length <= 0) {
  683. fclose(fp);
  684. return nullptr;
  685. }
  686. // alloc model buffer
  687. void *data = malloc((unsigned int)file_length);
  688. if (!data) {
  689. fclose(fp);
  690. return nullptr;
  691. }
  692. // read file into memory
  693. uint32_t read_size = (uint32_t)fread(data, 1, (unsigned int)file_length, fp);
  694. // check if read success
  695. if ((long)read_size != file_length) {
  696. free(data);
  697. data = nullptr;
  698. fclose(fp);
  699. return nullptr;
  700. }
  701. // close model file
  702. fclose(fp);
  703. // create an MemBuffer
  704. MemBuffer* membuf = new MemBuffer();
  705. if (!membuf) {
  706. free(data);
  707. data = nullptr;
  708. return nullptr;
  709. }
  710. membuf->data = malloc((unsigned int)read_size);
  711. // set size && data
  712. membuf->size = (uint32_t)read_size;
  713. memcpy((char*)membuf->data, (char*)data, read_size);
  714. free(data);
  715. return membuf;
  716. }
  717. /// placeholder0 placeholder1
  718. /// | /\ /\ |
  719. /// | / \/ \ |
  720. /// | / /\ \ |
  721. /// | | / \ | |
  722. /// | add0 mul0 |
  723. /// | / /c | \ |
  724. /// mul1 --- / | add1
  725. /// \ | |
  726. /// \ ---- add2 |
  727. /// | |
  728. /// retval0 retval1
  729. void CreateGraphDef(domi::tensorflow::GraphDef &graph_def) {
  730. // 1. add node
  731. auto placeholder0 = graph_def.add_node();
  732. auto placeholder1 = graph_def.add_node();
  733. auto add0 = graph_def.add_node();
  734. auto add1 = graph_def.add_node();
  735. auto mul0 = graph_def.add_node();
  736. auto mul1 = graph_def.add_node();
  737. auto add2 = graph_def.add_node();
  738. auto retval0 = graph_def.add_node();
  739. auto retval1 = graph_def.add_node();
  740. auto softmax0 = graph_def.add_node();
  741. auto softmax1 = graph_def.add_node();
  742. // 2. set info
  743. placeholder0->set_name("placeholder0");
  744. placeholder0->set_op("PlaceHolder");
  745. placeholder1->set_name("placeholder1");
  746. placeholder1->set_op("PlaceHolder");
  747. add0->set_name("add0");
  748. add0->set_op("Add");
  749. add1->set_name("add1");
  750. add1->set_op("Add");
  751. add2->set_name("add2");
  752. add2->set_op("Add");
  753. mul0->set_name("mul0");
  754. mul0->set_op("Mul");
  755. mul1->set_name("mul1");
  756. mul1->set_op("Mul");
  757. retval0->set_name("retval0");
  758. retval0->set_op("_RetVal");
  759. retval1->set_name("retval1");
  760. retval1->set_op("_RetVal");
  761. retval0->set_name("retval0");
  762. retval0->set_op("_RetVal");
  763. retval1->set_name("retval1");
  764. retval1->set_op("_RetVal");
  765. softmax0->set_name("Softmax0");
  766. softmax0->set_op("Softmax");
  767. softmax1->set_name("Softmax1");
  768. softmax1->set_op("Softmax");
  769. // 3. add edges
  770. add0->add_input("placeholder0");
  771. add0->add_input("placeholder1");
  772. mul0->add_input("placeholder0");
  773. mul0->add_input("placeholder1");
  774. mul1->add_input("placeholder0");
  775. mul1->add_input("add0");
  776. mul1->add_input("^mul0");
  777. add1->add_input("mul0");
  778. add1->add_input("placeholder1");
  779. add2->add_input("mul1");
  780. add2->add_input("mul0");
  781. retval0->add_input("add2:0");
  782. retval1->add_input("add1:0");
  783. softmax0->add_input("add3:0");
  784. softmax0->add_input("add2:0");
  785. }
  786. TEST_F(STestTensorflowParser, tensorflow_parser_success) {
  787. RegisterCustomOp();
  788. std::string case_dir = __FILE__;
  789. ParserOperator unused("Add");
  790. case_dir = case_dir.substr(0, case_dir.find_last_of("/"));
  791. std::string model_file = case_dir + "/origin_models/tf_add.pb";
  792. std::map<ge::AscendString, ge::AscendString> parser_params;
  793. ge::Graph graph;
  794. auto ret = ge::aclgrphParseTensorFlow(model_file.c_str(), parser_params, graph);
  795. ASSERT_EQ(ret, SUCCESS);
  796. ge::ComputeGraphPtr compute_graph = ge::GraphUtils::GetComputeGraph(graph);
  797. auto output_nodes_info = compute_graph->GetGraphOutNodesInfo();
  798. ASSERT_EQ(output_nodes_info.size(), 1);
  799. EXPECT_EQ((output_nodes_info.at(0).first->GetName()), "add_test_1");
  800. EXPECT_EQ((output_nodes_info.at(0).second), 0);
  801. auto &net_out_name = ge::GetParserContext().net_out_nodes;
  802. ASSERT_EQ(net_out_name.size(), 1);
  803. EXPECT_EQ(net_out_name.at(0), "add_test_1:0");
  804. }
  805. TEST_F(STestTensorflowParser, tensorflow_model_Failed) {
  806. ge::Graph graph;
  807. std::string caseDir = __FILE__;
  808. std::size_t idx = caseDir.find_last_of("/");
  809. caseDir = caseDir.substr(0, idx);
  810. std::string modelFile = caseDir + "/origin_models/model.pb";
  811. auto status = ge::aclgrphParseTensorFlow(modelFile.c_str(), graph);
  812. EXPECT_EQ(status, ge::SUCCESS);
  813. modelFile = caseDir + "/origin_models/test_depth_wise_conv2d.pb";
  814. status = ge::aclgrphParseTensorFlow(modelFile.c_str(), graph);
  815. EXPECT_EQ(status, ge::GRAPH_FAILED);
  816. }
  817. TEST_F(STestTensorflowParser, tensorflow_model_not_exist) {
  818. ge::Graph graph;
  819. std::string caseDir = __FILE__;
  820. std::size_t idx = caseDir.find_last_of("/");
  821. caseDir = caseDir.substr(0, idx);
  822. // model file is not exist
  823. std::string modelFile = caseDir + "/origin_models/conv2d_explicit1_pad.pb";
  824. auto status = ge::aclgrphParseTensorFlow(modelFile.c_str(), graph);
  825. EXPECT_EQ(status, ge::GRAPH_FAILED);
  826. }
  827. TEST_F(STestTensorflowParser, parser_tensorflow_model) {
  828. std::string caseDir = __FILE__;
  829. std::size_t idx = caseDir.find_last_of("/");
  830. caseDir = caseDir.substr(0, idx);
  831. std::string modelFile = caseDir + "/origin_models/tf_add.pb";
  832. const char *model_file = modelFile.c_str();
  833. std::string op_name = "ge_ascend_irgraph";
  834. ge::Graph graph(op_name);
  835. std::map<ge::AscendString, ge::AscendString> parser_options = {
  836. {ge::AscendString(ge::ir_option::INPUT_FORMAT), ge::AscendString("NHWC")},
  837. };
  838. auto ret_graph = ge::aclgrphParseTensorFlow(model_file, parser_options, graph);
  839. EXPECT_EQ(ret_graph, ge::FAILED);
  840. // parser tensorflow model out_node_size is equal to index
  841. string graph_name;
  842. AclGrphParseUtil acl_graph_parse_util;
  843. std::map<AscendString, AscendString> out_nodes_with_node_and_index = {
  844. {AscendString(ge::ir_option::OUT_NODES), AscendString("Placeholder:0;Placeholder_1:1")}};
  845. ParerSTestsUtils::ClearParserInnerCtx();
  846. auto ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_with_node_and_index, graph_name);
  847. ret_graph = ge::aclgrphParseTensorFlow(model_file, graph);
  848. EXPECT_EQ(ret_graph, domi::FAILED);
  849. // parser tensorflow model success
  850. modelFile = caseDir + "/origin_models/model.pb";
  851. model_file = modelFile.c_str();
  852. out_nodes_with_node_and_index = {{AscendString(ge::ir_option::OUT_NODES), AscendString("x:0;y:0")}};
  853. ParerSTestsUtils::ClearParserInnerCtx();
  854. ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_with_node_and_index, graph_name);
  855. ret_graph = ge::aclgrphParseTensorFlow(model_file, graph);
  856. EXPECT_EQ(ret_graph, domi::SUCCESS);
  857. }
  858. TEST_F(STestTensorflowParser, tensorflow_parser_to_json)
  859. {
  860. TensorFlowModelParser modelParser;
  861. std::string caseDir = __FILE__;
  862. std::size_t idx = caseDir.find_last_of("/");
  863. caseDir = caseDir.substr(0, idx);
  864. std::string modelFile = caseDir + "/origin_models/tf_add.pb";
  865. std::string jsonFile = caseDir + "/origin_models/test.json";
  866. const char *model_file = modelFile.c_str();
  867. const char *json_file = jsonFile.c_str();
  868. Status ret = modelParser.ToJson(model_file, json_file);
  869. EXPECT_EQ(ret, SUCCESS);
  870. }
  871. TEST_F(STestTensorflowParser, tensorflow_parserfrommemory_failed)
  872. {
  873. TensorFlowModelParser modelParser;
  874. std::string caseDir = __FILE__;
  875. std::size_t idx = caseDir.find_last_of("/");
  876. caseDir = caseDir.substr(0, idx);
  877. std::string modelFile = caseDir + "/origin_models/tf_add.pb";
  878. const char *data = modelFile.c_str();
  879. uint32_t size = 1;
  880. ge::Graph graph;
  881. std::map<ge::AscendString, ge::AscendString> parser_params;
  882. Status ret = ge::aclgrphParseTensorFlow(modelFile.c_str(), parser_params, graph);
  883. ASSERT_EQ(ret, SUCCESS);
  884. modelFile = caseDir + "/origin_models/tf_add.pb";
  885. parser_params = {{AscendString(ge::ir_option::OUT_NODES), AscendString("Placeholder:0;Placeholder_1:0")}};
  886. ret = ge::aclgrphParseTensorFlow(modelFile.c_str(), parser_params, graph);
  887. ge::ComputeGraphPtr compute_graph = ge::GraphUtils::GetComputeGraph(graph);
  888. ret = modelParser.ParseFromMemory(data, size, compute_graph);
  889. EXPECT_EQ(ret, INTERNAL_ERROR);
  890. }
  891. TEST_F(STestTensorflowParser, modelparser_parsefrommemory_success)
  892. {
  893. std::string caseDir = __FILE__;
  894. std::size_t idx = caseDir.find_last_of("/");
  895. caseDir = caseDir.substr(0, idx);
  896. std::string modelFile = caseDir + "/origin_models/tf_add.pb";
  897. const char* tmp_tf_pb_model = modelFile.c_str();
  898. ge::Graph graph;
  899. std::map<ge::AscendString, ge::AscendString> parser_params;
  900. Status ret = ge::aclgrphParseTensorFlow(modelFile.c_str(), parser_params, graph);
  901. ASSERT_EQ(ret, SUCCESS);
  902. ge::ComputeGraphPtr compute_graph = ge::GraphUtils::GetComputeGraph(graph);
  903. TensorFlowModelParser modelParser;
  904. MemBuffer* memBuffer = MemBufferFromFile(tmp_tf_pb_model);
  905. PreChecker::Instance().HasError() == false;
  906. ret = modelParser.ParseFromMemory((char*)memBuffer->data, memBuffer->size, compute_graph);
  907. free(memBuffer->data);
  908. delete memBuffer;
  909. }
  910. TEST_F(STestTensorflowParser, weightsparser_parsefrommemory_success)
  911. {
  912. std::string caseDir = __FILE__;
  913. std::size_t idx = caseDir.find_last_of("/");
  914. caseDir = caseDir.substr(0, idx);
  915. std::string modelFile = caseDir + "/origin_models/tf_add.pb";
  916. const char* tmp_tf_pb_model = modelFile.c_str();
  917. ge::Graph graph;
  918. std::map<ge::AscendString, ge::AscendString> parser_params;
  919. Status ret = ge::aclgrphParseTensorFlow(modelFile.c_str(), parser_params, graph);
  920. ASSERT_EQ(ret, SUCCESS);
  921. ge::ComputeGraphPtr compute_graph = ge::GraphUtils::GetComputeGraph(graph);
  922. auto weights_parser = domi::WeightsParserFactory::Instance()->CreateWeightsParser(domi::TENSORFLOW);
  923. MemBuffer* memBuffer = MemBufferFromFile(tmp_tf_pb_model);
  924. ret = weights_parser->ParseFromMemory((char*)memBuffer->data, memBuffer->size, compute_graph);
  925. free(memBuffer->data);
  926. delete memBuffer;
  927. EXPECT_EQ(SUCCESS, ret);
  928. }
  929. std::string getGraphCallbackV2(string subgraph_name)
  930. {
  931. std::string caseDir = __FILE__;
  932. std::size_t idx = caseDir.find_last_of("/");
  933. caseDir = caseDir.substr(0, idx);
  934. subgraph_name = caseDir + "/origin_models/tf_add.pb";
  935. return subgraph_name;
  936. }
  937. TEST_F(STestTensorflowParser, parser_ParseProtoWithSubgraphV2)
  938. {
  939. std::string caseDir = __FILE__;
  940. std::size_t idx = caseDir.find_last_of("/");
  941. caseDir = caseDir.substr(0, idx);
  942. const std::string root_proto = caseDir + "/origin_models/tf_add.pb";
  943. ge::Graph graph;
  944. std::map<ge::AscendString, ge::AscendString> parser_params;
  945. Status ret = ge::aclgrphParseTensorFlow(root_proto.c_str(), parser_params, graph);
  946. ASSERT_EQ(ret, SUCCESS);
  947. ge::ComputeGraphPtr root_graph = ge::GraphUtils::GetComputeGraph(graph);
  948. domi::GetGraphCallbackV2 callback(&getGraphCallbackV2);
  949. TensorFlowModelParser parser;
  950. ret = parser.ParseProtoWithSubgraph(root_proto, callback, root_graph);
  951. }
  952. TEST_F(STestTensorflowParser, parser_ConvertToGeDataType)
  953. {
  954. // convert to ge type success
  955. const uint32_t type1 = domi::tensorflow::DataType::DT_FLOAT;
  956. TensorFlowModelParser parser;
  957. ge::DataType dataType = parser.ConvertToGeDataType(type1);
  958. ASSERT_EQ(dataType, ge::DataType::DT_FLOAT);
  959. const uint32_t type2 = 80; // invalid type
  960. dataType = parser.ConvertToGeDataType(type2);
  961. ASSERT_EQ(dataType, ge::DataType::DT_UNDEFINED);
  962. }
  963. TEST_F(STestTensorflowParser, tensorflow_ParserProto_failed)
  964. {
  965. std::string caseDir = __FILE__;
  966. std::size_t idx = caseDir.find_last_of("/");
  967. caseDir = caseDir.substr(0, idx);
  968. const std::string root_proto = caseDir + "/origin_models/avgpool3dgrad.pb.txt";
  969. domi::tensorflow::GraphDef graphDef;
  970. ge::Graph graph;
  971. std::map<ge::AscendString, ge::AscendString> parser_params;
  972. Status ret = ge::aclgrphParseTensorFlow(root_proto.c_str(), parser_params, graph);
  973. ASSERT_EQ(ret, SUCCESS);
  974. ge::ComputeGraphPtr root_graph = ge::GraphUtils::GetComputeGraph(graph);
  975. TensorFlowModelParser tensorflow_parser;
  976. ret = tensorflow_parser.ParseProto(reinterpret_cast<google::protobuf::Message *>(&graphDef), root_graph);
  977. EXPECT_EQ(PARAM_INVALID, ret);
  978. // proto解析失败
  979. bool protoRet = parser::ReadProtoFromText(root_proto.c_str(), &graphDef);
  980. ASSERT_EQ(protoRet, false);
  981. ret = tensorflow_parser.ParseProto(reinterpret_cast<google::protobuf::Message *>(&graphDef), root_graph);
  982. ASSERT_EQ(ret, PARAM_INVALID);
  983. std::string serialized_proto = "";
  984. ret = tensorflow_parser.ParseProto(serialized_proto, root_graph);
  985. ASSERT_EQ(ret, FAILED);
  986. }
  987. TEST_F(STestTensorflowParser, tensorflow_parserAllGraph_failed)
  988. {
  989. std::string caseDir = __FILE__;
  990. std::size_t idx = caseDir.find_last_of("/");
  991. caseDir = caseDir.substr(0, idx);
  992. const std::string root_proto = caseDir + "/origin_models/conv2d.pb";
  993. domi::tensorflow::GraphDef graphDef;
  994. CreateGraphDef(graphDef);
  995. auto no_op = graphDef.add_node();
  996. no_op->set_name("no_op");
  997. no_op->set_op("NoOp");
  998. no_op->add_input("placeholder0");
  999. no_op->add_input("placeholder1");
  1000. ge::Graph graph;
  1001. std::map<ge::AscendString, ge::AscendString> parser_params;
  1002. Status ret = ge::aclgrphParseTensorFlow(root_proto.c_str(), parser_params, graph);
  1003. ASSERT_EQ(ret, SUCCESS);
  1004. ge::ComputeGraphPtr root_graph = ge::GraphUtils::GetComputeGraph(graph);
  1005. TensorFlowModelParser tensorflow_parser;
  1006. ret = tensorflow_parser.ParseAllGraph(reinterpret_cast<google::protobuf::Message *>(&graphDef), root_graph);
  1007. EXPECT_EQ(INTERNAL_ERROR, ret);
  1008. }
  1009. TEST_F(STestTensorflowParser, test_parse_acl_output_nodes)
  1010. {
  1011. AclGrphParseUtil acl_graph_parse_util;
  1012. string graph_name;
  1013. // case 1: Normal with 'node and index'
  1014. ParerSTestsUtils::ClearParserInnerCtx();
  1015. GetParserContext().type = domi::ONNX;
  1016. std::map<AscendString, AscendString> out_nodes_with_node_and_index = {
  1017. {AscendString(ge::ir_option::OUT_NODES), AscendString("Out1:0;Out2:1")}};
  1018. ParerSTestsUtils::ClearParserInnerCtx();
  1019. auto ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_with_node_and_index, graph_name);
  1020. ASSERT_EQ(ret, SUCCESS);
  1021. EXPECT_EQ(ge::GetParserContext().user_out_nodes.size(), 2);
  1022. EXPECT_EQ(ge::GetParserContext().out_nodes_map.size(), 2);
  1023. EXPECT_EQ(ge::GetParserContext().user_out_tensors.size(), 0);
  1024. // case 2: Normal with 'tensor name'
  1025. ParerSTestsUtils::ClearParserInnerCtx();
  1026. GetParserContext().type = domi::ONNX;
  1027. std::map<AscendString, AscendString> out_nodes_with_tensor_name = {
  1028. {AscendString(ge::ir_option::OUT_NODES), AscendString("Out_tensor_1;Out_tensor_2")}};
  1029. ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_with_tensor_name, graph_name);
  1030. ASSERT_EQ(ret, SUCCESS);
  1031. EXPECT_EQ(ge::GetParserContext().user_out_nodes.size(), 0);
  1032. EXPECT_EQ(ge::GetParserContext().out_nodes_map.size(), 0);
  1033. EXPECT_EQ(ge::GetParserContext().user_out_tensors.size(), 2);
  1034. // case 3: Failed with 'node and index' before 'tensor name'
  1035. ParerSTestsUtils::ClearParserInnerCtx();
  1036. GetParserContext().type = domi::ONNX;
  1037. std::map<AscendString, AscendString> out_nodes_mode_mixex_pre = {
  1038. {AscendString(ge::ir_option::OUT_NODES), AscendString("Out1:0;Out2:1;Out_tensor_1;Out_tensor_2")}};
  1039. ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_mode_mixex_pre, graph_name);
  1040. ASSERT_EQ(ret, PARAM_INVALID);
  1041. EXPECT_EQ(ge::GetParserContext().user_out_nodes.size(), 2);
  1042. EXPECT_EQ(ge::GetParserContext().out_nodes_map.size(), 2);
  1043. EXPECT_EQ(ge::GetParserContext().user_out_tensors.size(), 0);
  1044. // case 4: Failed with 'node and index' inserted in 'tensor name'
  1045. ParerSTestsUtils::ClearParserInnerCtx();
  1046. GetParserContext().type = domi::ONNX;
  1047. std::map<AscendString, AscendString> out_nodes_mode_mixex_mid = {
  1048. {AscendString(ge::ir_option::OUT_NODES), AscendString("Out_tensor_1;Out1:0;Out2:1;Out_tensor_2")}};
  1049. ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_mode_mixex_mid, graph_name);
  1050. ASSERT_EQ(ret, PARAM_INVALID);
  1051. EXPECT_EQ(ge::GetParserContext().user_out_nodes.size(), 0);
  1052. EXPECT_EQ(ge::GetParserContext().out_nodes_map.size(), 0);
  1053. EXPECT_EQ(ge::GetParserContext().user_out_tensors.size(), 1);
  1054. // case 5: Failed with 'node and index' after 'tensor name'
  1055. ParerSTestsUtils::ClearParserInnerCtx();
  1056. GetParserContext().type = domi::ONNX;
  1057. std::map<AscendString, AscendString> out_nodes_mode_mixex_post = {
  1058. {AscendString(ge::ir_option::OUT_NODES), AscendString("Out_tensor_1;Out_tensor_2;Out1:0;Out2:1")}};
  1059. ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_mode_mixex_post, graph_name);
  1060. ASSERT_EQ(ret, PARAM_INVALID);
  1061. EXPECT_EQ(ge::GetParserContext().user_out_nodes.size(), 0);
  1062. EXPECT_EQ(ge::GetParserContext().out_nodes_map.size(), 0);
  1063. EXPECT_EQ(ge::GetParserContext().user_out_tensors.size(), 2);
  1064. }
  1065. TEST_F(STestTensorflowParser, parse_AutoMappingByOp) {
  1066. static const string KEY_STRING = "key_string";
  1067. static const string KEY_INT = "key_int";
  1068. static const string KEY_FLOAT = "key_float";
  1069. static const string KEY_BOOL = "key_bool";
  1070. static const string KEY_TYPE = "key_type";
  1071. static const string VALUE_STRING = "string";
  1072. static const int64_t VALUE_INT = 1;
  1073. static const float VALUE_FLOAT = 1.0;
  1074. static const bool VALUE_BOOL = true;
  1075. static const domi::tensorflow::DataType VALUE_TYPE = domi::tensorflow::DataType::DT_FLOAT;
  1076. static const string VALUE_NAME = "test_name";
  1077. ge::OpDescPtr op_desc = std::make_shared<ge::OpDesc>();
  1078. NodeDef node_def;
  1079. domi::tensorflow::AttrValue value;
  1080. ge::Operator op = ge::OpDescUtils::CreateOperatorFromOpDesc(op_desc);
  1081. node_def.set_name(VALUE_NAME);
  1082. value.set_s(VALUE_STRING);
  1083. TensorFlowUtil::AddNodeAttr(KEY_STRING, value, &node_def);
  1084. value.set_i(VALUE_INT);
  1085. TensorFlowUtil::AddNodeAttr(KEY_INT, value, &node_def);
  1086. value.set_f(VALUE_FLOAT);
  1087. TensorFlowUtil::AddNodeAttr(KEY_FLOAT, value, &node_def);
  1088. value.set_b(VALUE_BOOL);
  1089. TensorFlowUtil::AddNodeAttr(KEY_BOOL, value, &node_def);
  1090. value.set_type(VALUE_TYPE);
  1091. TensorFlowUtil::AddNodeAttr(KEY_TYPE, value, &node_def);
  1092. domi::Status status = domi::AutoMappingFn(reinterpret_cast<google::protobuf::Message *>(&node_def), op);
  1093. EXPECT_EQ(domi::SUCCESS, status);
  1094. EXPECT_EQ(VALUE_NAME, op_desc->GetName());
  1095. string value_string = "";
  1096. ge::AttrUtils::GetStr(op_desc, KEY_STRING, value_string);
  1097. EXPECT_EQ(VALUE_STRING, value_string);
  1098. int64_t value_int = 0;
  1099. ge::AttrUtils::GetInt(op_desc, KEY_INT, value_int);
  1100. EXPECT_EQ(VALUE_INT, value_int);
  1101. float value_float = 0.0;
  1102. ge::AttrUtils::GetFloat(op_desc, KEY_FLOAT, value_float);
  1103. EXPECT_EQ(VALUE_FLOAT, value_float);
  1104. bool value_bool = false;
  1105. ge::AttrUtils::GetBool(op_desc, KEY_BOOL, value_bool);
  1106. EXPECT_EQ(VALUE_BOOL, value_bool);
  1107. ge::DataType data_type = ge::DT_UNDEFINED;
  1108. ge::AttrUtils::GetDataType(op_desc, KEY_TYPE, data_type);
  1109. EXPECT_EQ(ge::DT_FLOAT, data_type);
  1110. // test AutoMappingByOpFn
  1111. ge::OpDescPtr op_desc_dest = std::make_shared<ge::OpDesc>();
  1112. ge::Operator op_dest = ge::OpDescUtils::CreateOperatorFromOpDesc(op_desc_dest);
  1113. status = domi::AutoMappingByOpFn(op, op_dest);
  1114. EXPECT_EQ(domi::SUCCESS, status);
  1115. EXPECT_EQ(VALUE_NAME, op_dest.GetName());
  1116. value_string = "";
  1117. ge::AttrUtils::GetStr(op_desc_dest, KEY_STRING, value_string);
  1118. EXPECT_EQ(VALUE_STRING, value_string);
  1119. value_int = 0;
  1120. ge::AttrUtils::GetInt(op_desc_dest, KEY_INT, value_int);
  1121. EXPECT_EQ(VALUE_INT, value_int);
  1122. value_float = 0.0;
  1123. ge::AttrUtils::GetFloat(op_desc_dest, KEY_FLOAT, value_float);
  1124. EXPECT_EQ(VALUE_FLOAT, value_float);
  1125. value_bool = false;
  1126. ge::AttrUtils::GetBool(op_desc_dest, KEY_BOOL, value_bool);
  1127. EXPECT_EQ(VALUE_BOOL, value_bool);
  1128. data_type = ge::DT_UNDEFINED;
  1129. ge::AttrUtils::GetDataType(op_desc_dest, KEY_TYPE, data_type);
  1130. EXPECT_EQ(ge::DT_FLOAT, data_type);
  1131. }
  1132. TEST_F(STestTensorflowParser, parse_ParseNodeDef)
  1133. {
  1134. NodeDef * node_def = new NodeDef();
  1135. node_def->set_name("test_name");
  1136. node_def->set_op("PlaceholderWithDefault");
  1137. bool isDatasetInit = true;
  1138. TensorFlowModelParser model_parser;
  1139. Status ret = model_parser.AdaptOpType(node_def, isDatasetInit);
  1140. EXPECT_EQ(domi::SUCCESS, ret);
  1141. node_def->set_op("Add");
  1142. ret = model_parser.AdaptOpType(node_def, isDatasetInit);
  1143. EXPECT_EQ(domi::SUCCESS, ret);
  1144. delete node_def;
  1145. }
  1146. TEST_F(STestTensorflowParser, parse_AddFmkNode)
  1147. {
  1148. TensorFlowModelParser modelParser;
  1149. std::string caseDir = __FILE__;
  1150. std::size_t idx = caseDir.find_last_of("/");
  1151. caseDir = caseDir.substr(0, idx);
  1152. std::string modelFile = caseDir + "/origin_models/tf_add.pb";
  1153. ge::Graph graph;
  1154. string graph_name;
  1155. AclGrphParseUtil acl_graph_parse_util;
  1156. std::map<ge::AscendString, ge::AscendString> parser_options = {{AscendString(ge::ir_option::OUT_NODES), AscendString("Placeholder:0;Placeholder_1:0")}};
  1157. ParerSTestsUtils::ClearParserInnerCtx();
  1158. Status ret = acl_graph_parse_util.ParseParamsBeforeGraph(parser_options, graph_name);
  1159. ret = aclgrphParseTensorFlow(modelFile.c_str(), parser_options, graph);
  1160. ASSERT_EQ(ret, SUCCESS);
  1161. ge::ComputeGraphPtr compute_graph = std::make_shared<ge::ComputeGraph>(GRAPH_DEFAULT_NAME);
  1162. tensorflow::GraphDef *graphDef = new (std::nothrow) tensorflow::GraphDef();
  1163. ScopePassManager pass_manager;
  1164. std::shared_ptr<ScopeGraph> scope_graph = pass_manager.BuildScopeGraph(graphDef);
  1165. std::string fusion_op_name = "fusion_op_name";
  1166. FusionScopesResult *fusion_rlt = new (std::nothrow) FusionScopesResult();
  1167. EXPECT_NE(fusion_rlt, nullptr);
  1168. fusion_rlt->Init();
  1169. GenFusionScopesResult(scope_graph, fusion_rlt, fusion_op_name);
  1170. GenOriginContext(&modelParser, fusion_op_name);
  1171. // origin inner node def
  1172. NodeDef* node_def = MallocNodeDef("scope_node_1", "Add");
  1173. EXPECT_NE(node_def, nullptr);
  1174. modelParser.fusion_op_nodedef_map_[fusion_op_name].push_back(node_def);
  1175. bool train_flag_backup = ge::GetParserContext().train_flag;
  1176. ge::GetParserContext().train_flag = true;
  1177. REGISTER_CUSTOM_OP("Identity")
  1178. .FrameworkType(domi::TENSORFLOW)
  1179. .OriginOpType("Identity")
  1180. .ParseParamsFn(ParseParams)
  1181. .ImplyType(ImplyType::TVM);
  1182. REGISTER_CUSTOM_OP("Constant")
  1183. .FrameworkType(domi::TENSORFLOW)
  1184. .OriginOpType("Const")
  1185. .ParseParamsFn(ParseParams)
  1186. .ImplyType(ImplyType::TVM);
  1187. register_tbe_op();
  1188. std::vector<std::string> node_name_list;
  1189. GenOriginNodeDef(&modelParser, node_name_list);
  1190. std::set<std::string> malloc_node_name_list(node_name_list.begin(), node_name_list.end());
  1191. node_name_list.push_back(fusion_op_name);
  1192. ret = modelParser.AddFmkNode(compute_graph, scope_graph, node_name_list, false);
  1193. EXPECT_EQ(ret, PARAM_INVALID);
  1194. EXPECT_EQ(modelParser.scope_inner_node_map_.size(), 0);
  1195. EXPECT_EQ(modelParser.nodedef_map_.size(), 5);
  1196. ret = modelParser.AddEdges(compute_graph);
  1197. EXPECT_EQ(ret, SUCCESS);
  1198. // release resource
  1199. delete graphDef;
  1200. delete node_def;
  1201. modelParser.DeleteFuisonNodeDef();
  1202. FreeNodeDefMap(&modelParser, malloc_node_name_list);
  1203. ge::GetParserContext().train_flag = train_flag_backup;
  1204. }
  1205. TEST_F(STestTensorflowParser, parse_AddScopeInnerNode)
  1206. {
  1207. TensorFlowModelParser modelParser;
  1208. std::string caseDir = __FILE__;
  1209. std::size_t idx = caseDir.find_last_of("/");
  1210. caseDir = caseDir.substr(0, idx);
  1211. std::string modelFile = caseDir + "/origin_models/tf_add.pb";
  1212. std::string op_name = "ge_ascend_irgraph";
  1213. ge::Graph graph(op_name);
  1214. ge::ComputeGraphPtr compute_graph = ge::GraphUtils::GetComputeGraph(graph);
  1215. std::map<ge::AscendString, ge::AscendString> parser_params = {
  1216. {AscendString(ge::ir_option::OUT_NODES), AscendString("Placeholder:0;Placeholder_1:0")}};
  1217. Status ret = ge::aclgrphParseTensorFlow(modelFile.c_str(), parser_params, graph);
  1218. EXPECT_EQ(ret, SUCCESS);
  1219. std::mutex graph_mutex;
  1220. tensorflow::NodeDef *node_def = initNodeDef();
  1221. node_def->set_name("FastrcnnPredictions");
  1222. node_def->set_op("FastrcnnPredictions");
  1223. // can't find in scope_inner_node_map
  1224. ret = modelParser.AddScopeInnerNode(&modelParser, compute_graph, &graph_mutex, node_def);
  1225. EXPECT_EQ(ret, PARAM_INVALID);
  1226. delete node_def;
  1227. }
  1228. TEST_F(STestTensorflowParser, dyncmic_rnn_scope_pass_plugin_test) {
  1229. ge::Graph graph;
  1230. std::cout << __FILE__ << std::endl;
  1231. std::string caseDir = __FILE__;
  1232. std::size_t idx = caseDir.find_last_of("/");
  1233. caseDir = caseDir.substr(0, idx);
  1234. std::string modelFile = caseDir + "/origin_models/tensor_array.pb";
  1235. std::map<ge::AscendString, ge::AscendString> params;
  1236. string key ="enable_scope_fusion_passes";
  1237. string value ="ScopeDynamicRNNPass";
  1238. params.insert(std::make_pair(ge::AscendString(key.c_str()), ge::AscendString(value.c_str())));
  1239. auto status = aclgrphParseTensorFlow(modelFile.c_str(), params, graph);
  1240. EXPECT_EQ(status, SUCCESS);
  1241. }
  1242. TEST_F(STestTensorflowParser, avgpool3dgrad_plugin_test_format_NDHWC) {
  1243. ge::Graph graph;
  1244. std::cout << __FILE__ << std::endl;
  1245. std::string caseDir = __FILE__;
  1246. std::size_t idx = caseDir.find_last_of("/");
  1247. caseDir = caseDir.substr(0, idx);
  1248. std::string modelFile = caseDir + "/origin_models/avgpool3dgrad_case_1.pb";
  1249. auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
  1250. EXPECT_EQ(status, SUCCESS);
  1251. }
  1252. TEST_F(STestTensorflowParser, tensorflow_merge_test) {
  1253. ge::Graph graph;
  1254. std::cout << __FILE__ << std::endl;
  1255. std::string caseDir = __FILE__;
  1256. std::size_t idx = caseDir.find_last_of("/");
  1257. caseDir = caseDir.substr(0, idx);
  1258. std::string modelFile = caseDir + "/origin_models/merge.pb";
  1259. auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
  1260. EXPECT_EQ(status, FAILED);
  1261. }
  1262. TEST_F(STestTensorflowParser, tensorflow_no_op_test) {
  1263. ge::Graph graph;
  1264. std::cout << __FILE__ << std::endl;
  1265. std::string caseDir = __FILE__;
  1266. std::size_t idx = caseDir.find_last_of("/");
  1267. caseDir = caseDir.substr(0, idx);
  1268. std::string modelFile = caseDir + "/origin_models/test_no_op.pb";
  1269. auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
  1270. EXPECT_EQ(status, SUCCESS);
  1271. }
  1272. TEST_F(STestTensorflowParser, tensorflow_identity_test) {
  1273. ge::Graph graph;
  1274. std::cout << __FILE__ << std::endl;
  1275. std::string caseDir = __FILE__;
  1276. std::size_t idx = caseDir.find_last_of("/");
  1277. caseDir = caseDir.substr(0, idx);
  1278. std::string modelFile = caseDir + "/origin_models/test_identity.pb";
  1279. auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
  1280. EXPECT_EQ(status, SUCCESS);
  1281. }
  1282. TEST_F(STestTensorflowParser, tensorflow_constant_test) {
  1283. ge::Graph graph;
  1284. std::cout << __FILE__ << std::endl;
  1285. std::string caseDir = __FILE__;
  1286. std::size_t idx = caseDir.find_last_of("/");
  1287. caseDir = caseDir.substr(0, idx);
  1288. std::string modelFile = caseDir + "/origin_models/test_constant.pb";
  1289. auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
  1290. EXPECT_EQ(status, SUCCESS);
  1291. TensorFlowConstantParser constantParser;
  1292. ge::OpDescPtr op_dest = make_shared<ge::OpDesc>("constant", ge::parser::CONSTANT);
  1293. NodeDef* node_def = initNodeDef();
  1294. node_def->set_name("Constant");
  1295. auto params = constantParser.ParseParams(node_def, op_dest);
  1296. EXPECT_EQ(params, SUCCESS);
  1297. auto value = constantParser.ParseValue(node_def, op_dest);
  1298. EXPECT_EQ(value, SUCCESS);
  1299. ConstantOperator op;
  1300. auto type = constantParser.ParseDType(node_def, &op);
  1301. EXPECT_EQ(type, SUCCESS);
  1302. }
  1303. TEST_F(STestTensorflowParser, tensorflow_reshpae_test) {
  1304. ge::Graph graph;
  1305. std::cout << __FILE__ << std::endl;
  1306. std::string caseDir = __FILE__;
  1307. std::size_t idx = caseDir.find_last_of("/");
  1308. caseDir = caseDir.substr(0, idx);
  1309. std::string modelFile = caseDir + "/origin_models/test_reshape.pb";
  1310. auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
  1311. EXPECT_EQ(status, SUCCESS);
  1312. TensorFlowReshapeParser parser;
  1313. NodeDef * nodeDef = new NodeDef();
  1314. ge::OpDescPtr opdef_ = make_shared<::ge::OpDesc>("","");
  1315. google::protobuf::Map<std::string, tensorflow::AttrValue > *attr_map = nodeDef->mutable_attr();
  1316. domi::tensorflow::AttrValue tshape_attr_value;
  1317. tshape_attr_value.set_type(domi::tensorflow::DT_INT32);
  1318. (*attr_map)[TENSORFLOW_ATTR_TSHAPE] = tshape_attr_value;
  1319. domi::tensorflow::AttrValue t_attr_value;
  1320. t_attr_value.set_type(domi::tensorflow::DT_FLOAT);
  1321. (*attr_map)[TENSORFLOW_ATTR_T] = t_attr_value;
  1322. Status ret = parser.ParseParams(nodeDef, opdef_);
  1323. EXPECT_EQ(domi::SUCCESS, ret);
  1324. delete nodeDef;
  1325. }
  1326. TEST_F(STestTensorflowParser, tensorflow_squeeze_test) {
  1327. ge::Graph graph;
  1328. std::cout << __FILE__ << std::endl;
  1329. std::string caseDir = __FILE__;
  1330. std::size_t idx = caseDir.find_last_of("/");
  1331. caseDir = caseDir.substr(0, idx);
  1332. std::string modelFile = caseDir + "/origin_models/test_sequeeze.pb";
  1333. auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
  1334. EXPECT_EQ(status, SUCCESS);
  1335. TensorFlowSqueezeParser parser;
  1336. NodeDef *nodeDef = initNodeDef();
  1337. ge::OpDescPtr opDef = make_shared<::ge::OpDesc>("Squeeze","Squeeze");
  1338. Status ret = parser.ParseParams(nodeDef, opDef);
  1339. EXPECT_EQ(ret, SUCCESS);
  1340. NodeDef *nodeDef_dim = initNodeDef_dims();
  1341. ret = parser.ParseParams(nodeDef_dim, opDef);
  1342. EXPECT_EQ(SUCCESS, ret);
  1343. NodeDef *nodeDef_axis_dims = initNodeDef_axis_dims();
  1344. ret = parser.ParseParams(nodeDef_axis_dims, opDef);
  1345. EXPECT_EQ(GRAPH_PARAM_INVALID, ret);
  1346. static const string KEY_SHAPE_LIST = "key_shape_list";
  1347. static const string KEY_TENSOR_LIST = "key_tensor_list";
  1348. static const string KEY_DEFAULT = "key_default";
  1349. NodeDef *nodeDef2 = new NodeDef();
  1350. google::protobuf::Map<std::string, tensorflow::AttrValue> *node_attr_map = nodeDef2->mutable_attr();
  1351. domi::tensorflow::AttrValue dtype_attr_value ;
  1352. dtype_attr_value.set_type(domi::tensorflow::DT_FLOAT);
  1353. (*node_attr_map)[TENSORFLOW_ATTR_T] = dtype_attr_value;
  1354. //设置strides属性
  1355. tensorflow::AttrValue axis_attr_value;
  1356. tensorflow::AttrValue_ListValue *list = axis_attr_value.mutable_list();
  1357. list->add_i(1);
  1358. list->add_i(2);
  1359. (*node_attr_map)[ge::SQUEEZE_ATTR_AXIS] = axis_attr_value;
  1360. domi::tensorflow::AttrValue value;
  1361. domi::tensorflow::AttrValue df_attr_value;
  1362. df_attr_value.set_i((int64_t)ccTensorFormat_t::CC_TENSOR_NHWC);
  1363. domi::tensorflow::AttrValue pad_attr_value;
  1364. pad_attr_value.set_i((int64_t)tensorflow::DT_FLOAT);
  1365. domi::tensorflow::AttrValue shape;
  1366. shape.mutable_list()->add_i((int64)32);
  1367. shape.mutable_list()->add_i((int64)32);
  1368. shape.mutable_list()->add_i((int64)14);
  1369. static const string KEY_TYPE_LIST = "key_type_list";
  1370. const std::string ATTR_NAME_INPUT_TENSOR_DESC = "input_tensor_desc";
  1371. const std::string ATTR_NAME_OUTPUT_TENSOR_DESC = "output_tensor_desc";
  1372. static const domi::tensorflow::DataType VALUE_TYPE = domi::tensorflow::DataType::DT_FLOAT;
  1373. value.clear_value();
  1374. value.mutable_list()->add_type(VALUE_TYPE);
  1375. TensorFlowUtil::AddNodeAttr(KEY_TYPE_LIST, value, nodeDef2);
  1376. value.clear_value();
  1377. domi::tensorflow::NameAttrList name_attr_list;
  1378. name_attr_list.mutable_attr()->insert({"serialize_datatype", pad_attr_value});
  1379. name_attr_list.mutable_attr()->insert({"serialize_format", df_attr_value});
  1380. name_attr_list.mutable_attr()->insert({"serialize_shape", shape});
  1381. *(value.mutable_list()->add_func()) = name_attr_list;
  1382. nodeDef2->mutable_attr()->insert({ge::ATTR_NAME_INPUT_TENSOR_DESC, value});
  1383. nodeDef2->mutable_attr()->insert({ge::ATTR_NAME_OUTPUT_TENSOR_DESC, value});
  1384. ret = parser.ParseParams(nodeDef2, opDef);
  1385. EXPECT_EQ(domi::SUCCESS, ret);
  1386. GeTensorDesc ge_desc;
  1387. ge_desc.SetFormat(ge::FORMAT_C1HWNCoC0);
  1388. ge_desc.SetDataType(ge::DT_FLOAT);
  1389. ge_desc.SetShape(GeShape({1,1,1,1,1,1}));
  1390. ret = parser.ParseDesc(value, ge_desc);
  1391. EXPECT_EQ(ret, SUCCESS);
  1392. delete nodeDef2;
  1393. delete nodeDef_axis_dims;
  1394. delete nodeDef_dim;
  1395. delete nodeDef;
  1396. }
  1397. TEST_F(STestTensorflowParser, tensorflow_fill_test) {
  1398. ge::Graph graph;
  1399. std::cout << __FILE__ << std::endl;
  1400. std::string caseDir = __FILE__;
  1401. std::size_t idx = caseDir.find_last_of("/");
  1402. caseDir = caseDir.substr(0, idx);
  1403. std::string modelFile = caseDir + "/origin_models/test_fill.pb";
  1404. auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
  1405. EXPECT_EQ(status, SUCCESS);
  1406. }
  1407. TEST_F(STestTensorflowParser, tensorflow_shape_n_test) {
  1408. ge::Graph graph;
  1409. std::cout << __FILE__ << std::endl;
  1410. std::string caseDir = __FILE__;
  1411. std::size_t idx = caseDir.find_last_of("/");
  1412. caseDir = caseDir.substr(0, idx);
  1413. std::string modelFile = caseDir + "/origin_models/test_shape_n.pb";
  1414. auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
  1415. EXPECT_EQ(status, SUCCESS);
  1416. }
  1417. TEST_F(STestTensorflowParser, tensorflow_switch_test) {
  1418. ge::Graph graph;
  1419. std::cout << __FILE__ << std::endl;
  1420. std::string caseDir = __FILE__;
  1421. std::size_t idx = caseDir.find_last_of("/");
  1422. caseDir = caseDir.substr(0, idx);
  1423. std::string modelFile = caseDir + "/origin_models/test_switch.pb";
  1424. auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
  1425. EXPECT_EQ(status, SUCCESS);
  1426. TensorFlowRefSwitchParser refSwitchParser;
  1427. ge::OpDescPtr op_dest = make_shared<ge::OpDesc>("constant", ge::parser::CONSTANT);
  1428. NodeDef* node_def = initNodeDef();
  1429. node_def->set_name("RefSwitch");
  1430. auto params = refSwitchParser.ParseParams(node_def, op_dest);
  1431. EXPECT_EQ(params, SUCCESS);
  1432. RefSwitchOperator op;
  1433. auto parseRet = refSwitchParser.ParseT(node_def, &op);
  1434. EXPECT_EQ(parseRet, SUCCESS);
  1435. }
  1436. TEST_F(STestTensorflowParser, tensorflow_enter_test) {
  1437. ge::Graph graph;
  1438. std::cout << __FILE__ << std::endl;
  1439. std::string caseDir = __FILE__;
  1440. std::size_t idx = caseDir.find_last_of("/");
  1441. caseDir = caseDir.substr(0, idx);
  1442. std::string modelFile = caseDir + "/origin_models/test_enter.pb";
  1443. auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
  1444. EXPECT_EQ(status, SUCCESS);
  1445. TensorFlowEnterParser enterParser;
  1446. ge::OpDescPtr op_dest = make_shared<ge::OpDesc>("Enter", ge::parser::ENTER);
  1447. NodeDef* node_def = initNodeDef();
  1448. node_def->set_name("Enter");
  1449. Status ret = enterParser.ParseParams(node_def, op_dest);
  1450. EXPECT_EQ(ret, FAILED);
  1451. static const string KEY_SHAPE_LIST = "key_shape_list";
  1452. static const string KEY_TENSOR_LIST = "key_tensor_list";
  1453. static const string KEY_DEFAULT = "key_default";
  1454. google::protobuf::Map<std::string, tensorflow::AttrValue> *node_attr_map = node_def->mutable_attr();
  1455. domi::tensorflow::AttrValue dtype_attr_value;
  1456. dtype_attr_value.set_type(domi::tensorflow::DT_FLOAT);
  1457. (*node_attr_map)[TENSORFLOW_ATTR_T] = dtype_attr_value;
  1458. //设置strides属性
  1459. domi::tensorflow::AttrValue axis_attr_value;
  1460. ::tensorflow::AttrValue_ListValue* list = axis_attr_value.mutable_list();
  1461. list->add_i(1);
  1462. list->add_i(2);
  1463. (*node_attr_map)[ge::SQUEEZE_ATTR_AXIS] = axis_attr_value;
  1464. domi::tensorflow::AttrValue value;
  1465. domi::tensorflow::AttrValue df_attr_value;
  1466. df_attr_value.set_i((int64_t)ccTensorFormat_t::CC_TENSOR_NHWC);
  1467. domi::tensorflow::AttrValue pad_attr_value;
  1468. pad_attr_value.set_i((int64_t)tensorflow::DT_FLOAT);
  1469. domi::tensorflow::AttrValue shape;
  1470. shape.mutable_list()->add_i((int64)32);
  1471. shape.mutable_list()->add_i((int64)32);
  1472. shape.mutable_list()->add_i((int64)14);
  1473. static const string KEY_TYPE_LIST = "key_type_list";
  1474. const std::string ENTER_ATTR_FRAME_NAME = "frame_name";
  1475. const std::string ATTR_NAME_OUTPUT_TENSOR_DESC = "output_tensor_desc";
  1476. static const domi::tensorflow::DataType VALUE_TYPE = domi::tensorflow::DataType::DT_FLOAT;
  1477. value.clear_value();
  1478. value.mutable_list()->add_type(VALUE_TYPE);
  1479. TensorFlowUtil::AddNodeAttr(KEY_TYPE_LIST, value, node_def);
  1480. value.clear_value();
  1481. domi::tensorflow::NameAttrList name_attr_list;
  1482. name_attr_list.mutable_attr()->insert({"serialize_datatype", pad_attr_value});
  1483. name_attr_list.mutable_attr()->insert({"serialize_format", df_attr_value});
  1484. name_attr_list.mutable_attr()->insert({"serialize_shape", shape});
  1485. *(value.mutable_list()->add_func()) = name_attr_list;
  1486. node_def->mutable_attr()->insert({ge::ENTER_ATTR_FRAME_NAME, value});
  1487. node_def->mutable_attr()->insert({ge::ATTR_NAME_OUTPUT_TENSOR_DESC, value});
  1488. ret = enterParser.ParseParams(node_def, op_dest);
  1489. EXPECT_EQ(ret, FAILED);
  1490. }
  1491. TEST_F(STestTensorflowParser, tensorflow_VariableV2_test) {
  1492. ge::Graph graph;
  1493. std::string caseDir = __FILE__;
  1494. std::size_t idx = caseDir.find_last_of("/");
  1495. caseDir = caseDir.substr(0, idx);
  1496. std::string modelFile = caseDir + "/origin_models/test_VariableV2.pb";
  1497. auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
  1498. EXPECT_EQ(status, SUCCESS);
  1499. }
  1500. TEST_F(STestTensorflowParser, tensorflow_fusion_op_parser_test)
  1501. {
  1502. TensorFlowFusionOpParser fusionOpParser;
  1503. ge::OpDescPtr op_dest = make_shared<ge::OpDesc>("FusionOp", ge::parser::CONSTANT);
  1504. int index = 0;
  1505. NodeDef* node_def = fusioninitNodeDef(index);
  1506. node_def->set_name("FusionOp");
  1507. auto ret = fusionOpParser.ParseParams(node_def, op_dest);
  1508. EXPECT_EQ(ret, SUCCESS);
  1509. int32_t param = 1;
  1510. ret = fusionOpParser.ParseParamFromConst(node_def, param);
  1511. EXPECT_EQ(ret, SUCCESS);
  1512. ret = fusionOpParser.ParseParamFromConst(node_def, param, index);
  1513. EXPECT_EQ(ret, SUCCESS);
  1514. float params = 0.0;
  1515. ret = fusionOpParser.ParseParamFromConst(node_def, params);
  1516. EXPECT_EQ(ret, SUCCESS);
  1517. index = 2;
  1518. node_def = fusioninitNodeDef(index);
  1519. ret = fusionOpParser.ParseParamFromConst(node_def, params, index);
  1520. EXPECT_EQ(ret, domi::PARAM_INVALID);
  1521. ret = fusionOpParser.ParseHalfFromConst(node_def, params, 0);
  1522. EXPECT_EQ(ret, SUCCESS);
  1523. ret = fusionOpParser.ParseHalfFromConst(node_def, params, 3);
  1524. EXPECT_EQ(ret, domi::PARAM_INVALID);
  1525. node_def = fusioninitNodeDef(0);
  1526. ret = fusionOpParser.ParseHalfFromConst(node_def, params, 3);
  1527. EXPECT_EQ(ret, domi::PARAM_INVALID);
  1528. static const float VALUE_FLOAT = 1.0;
  1529. ge::GeTensorPtr weight = nullptr;
  1530. ret = fusionOpParser.ParseWeightFromConst(node_def, weight);
  1531. EXPECT_EQ(ret, domi::SUCCESS);
  1532. EXPECT_NE(weight, nullptr);
  1533. ge::DataType ge_data_type = weight->GetTensorDesc().GetDataType();
  1534. EXPECT_EQ(ge_data_type, ge::DataType::DT_FLOAT);
  1535. const uint8_t* data_buff = weight->GetData().GetData();
  1536. size_t data_size = weight->GetData().size();
  1537. EXPECT_NE(data_buff, nullptr);
  1538. EXPECT_EQ(data_size, sizeof(float));
  1539. float value_float = *((float*)data_buff);
  1540. EXPECT_EQ(value_float, VALUE_FLOAT);
  1541. delete node_def;
  1542. }
  1543. TEST_F(STestTensorflowParser, tensorflow_auto_mapping_parser_adapter_test)
  1544. {
  1545. ge::OpDescPtr op_dest = nullptr;
  1546. Message *op_src = nullptr;
  1547. TensorFlowAutoMappingParserAdapter autoMappingParser;
  1548. NodeDef* node_def = initNodeDef();
  1549. Status ret = autoMappingParser.ParseParams(op_src, op_dest);
  1550. EXPECT_EQ(ret, PARAM_INVALID);
  1551. ret = autoMappingParser.ParseParams(node_def, op_dest);
  1552. EXPECT_EQ(ret, PARAM_INVALID);
  1553. op_dest = make_shared<ge::OpDesc>("AutoMapping", ge::parser::CONSTANT);
  1554. op_dest->SetType(ge::parser::EMPTY);
  1555. ret = autoMappingParser.ParseParams(node_def, op_dest);
  1556. EXPECT_EQ(ret, SUCCESS);
  1557. op_dest->SetType(ge::parser::IDENTITYN);
  1558. ret = autoMappingParser.ParseParams(node_def, op_dest);
  1559. EXPECT_EQ(ret, SUCCESS);
  1560. op_dest->SetType(ge::parser::SIZE);
  1561. ret = autoMappingParser.ParseParams(node_def, op_dest);
  1562. EXPECT_EQ(ret, SUCCESS);
  1563. op_dest->SetType(ge::parser::SHAPE);
  1564. ret = autoMappingParser.ParseParams(node_def, op_dest);
  1565. EXPECT_EQ(ret, SUCCESS);
  1566. }
  1567. TEST_F(STestTensorflowParser, tensorflow_fusion_custom_parser_adapter_test)
  1568. {
  1569. REGISTER_CUSTOM_OP("FusionCustom")
  1570. .FrameworkType(domi::TENSORFLOW)
  1571. .OriginOpType("FusionCustom")
  1572. .FusionParseParamsFn(FusionParserParams)
  1573. .ImplyType(ImplyType::TVM);
  1574. register_tbe_op();
  1575. auto graph = std::make_shared<ge::ComputeGraph>("FusionCustom");
  1576. auto op_desc = std::make_shared<ge::OpDesc>("FusionCustom", "FusionCustom");
  1577. auto node = graph->AddNode(op_desc);
  1578. NodeDef *node_def = new NodeDef();
  1579. std::vector<const NodeDef *> v_input_const1;
  1580. v_input_const1.push_back(node_def);
  1581. TensorFlowFusionCustomParserAdapter parser;
  1582. domi::Status status = parser.ParseParams(v_input_const1, node);
  1583. EXPECT_EQ(SUCCESS, status);
  1584. ge::Operator op_src("pool", "pooling");
  1585. std::vector<ge::Operator> v_input_const2;
  1586. v_input_const2.push_back(op_src);
  1587. Status ret = parser.ParseParams(v_input_const2, node);
  1588. EXPECT_EQ(FAILED, ret);
  1589. delete node_def;
  1590. }
  1591. TEST_F(STestTensorflowParser, tensorflow_custom_parser_adapter_test)
  1592. {
  1593. ge::Operator op_src("pool", "pooling");
  1594. ge::OpDescPtr op_dest = std::make_shared<ge::OpDesc>();
  1595. TensorFlowCustomParserAdapter parser;
  1596. Status ret = parser.ParseParams(op_src, op_dest);
  1597. EXPECT_EQ(ret, FAILED);
  1598. REGISTER_CUSTOM_OP("Variable")
  1599. .FrameworkType(domi::TENSORFLOW)
  1600. .OriginOpType("VariableV2")
  1601. .ParseParamsFn(ParseParams)
  1602. .ParseParamsByOperatorFn(ParseParamByOpFunc)
  1603. .ImplyType(ImplyType::CUSTOM);
  1604. register_tbe_op();
  1605. Operator opSrc(ge::parser::VARIABLE, "VariableV2");
  1606. ret = parser.ParseParams(opSrc, op_dest);
  1607. EXPECT_EQ(ret, SUCCESS);
  1608. }
  1609. TEST_F(STestTensorflowParser, tensorflow_graph_functiondef_FindAttrValue_test)
  1610. {
  1611. GraphToFunctionDef functionDef;
  1612. NodeDef *node_def = nullptr;
  1613. std::string attr_name = "Const";
  1614. tensorflow::AttrValue attr_value;
  1615. bool ret = functionDef.FindAttrValue(node_def, attr_name, attr_value);
  1616. EXPECT_EQ(ret, false);
  1617. node_def = initNodeDef();
  1618. attr_name = ge::ATTR_NAME_INPUT_TENSOR_DESC;
  1619. node_def->set_name("Const");
  1620. ret = functionDef.FindAttrValue(node_def, attr_name, attr_value);
  1621. EXPECT_EQ(ret, false);
  1622. }
  1623. TEST_F(STestTensorflowParser, tensorflow_graph_functiondef_BuildFunctionDef_test)
  1624. {
  1625. ge::ComputeGraphPtr subGraph = std::make_shared<ge::ComputeGraph>("default");
  1626. string inputNodeType = "DATA";
  1627. MakeDagGraph(subGraph, inputNodeType);
  1628. FunctionDefLibrary library;
  1629. tensorflow::NodeDef call_node_def;
  1630. call_node_def.set_op("fusionop");
  1631. call_node_def.set_name("fusionop");
  1632. vector<ge::InDataAnchorPtr> in_anchor;
  1633. vector<ge::OutDataAnchorPtr> out_anchor;
  1634. for (ge::NodePtr node : subGraph->GetAllNodes()) {
  1635. for (auto in : node->GetAllInDataAnchors()) {
  1636. if (in->GetPeerOutAnchor() != nullptr && in->GetPeerOutAnchor()->GetOwnerNode()->GetOpDesc()->GetType() == parser::DATA) {
  1637. in_anchor.push_back(in);
  1638. }
  1639. }
  1640. for (auto out : node->GetAllOutDataAnchors()) {
  1641. for (auto i : out->GetPeerInDataAnchors()) {
  1642. if (i->GetOwnerNode()->GetOpDesc()->GetType() == parser::NETOUTPUT) {
  1643. out_anchor.push_back(out);
  1644. }
  1645. }
  1646. }
  1647. }
  1648. Status ret = GraphToFunctionDef::BuildFunctionDef(subGraph,
  1649. "fusionop",
  1650. &library,
  1651. &call_node_def,
  1652. in_anchor,
  1653. out_anchor);
  1654. EXPECT_EQ(domi::INTERNAL_ERROR, ret);
  1655. }
  1656. TEST_F(STestTensorflowParser, tensorflow_CheckOpShapeDim_test)
  1657. {
  1658. NodeDef *node_def = initNodeDef();
  1659. std::set<int> dims;
  1660. dims.insert(1);
  1661. dims.insert(2);
  1662. bool valid = true;
  1663. TensorFlowModelParser parser;
  1664. Status ret = parser.CheckOpShapeDim(node_def, dims, valid);
  1665. EXPECT_EQ(ret, SUCCESS);
  1666. static const string KEY_SHAPE_LIST = "key_shape_list";
  1667. static const string KEY_TENSOR_LIST = "key_tensor_list";
  1668. static const string KEY_DEFAULT = "key_default";
  1669. google::protobuf::Map<std::string, tensorflow::AttrValue> *node_attr_map = node_def->mutable_attr();
  1670. domi::tensorflow::AttrValue dtype_attr_value;
  1671. dtype_attr_value.set_type(domi::tensorflow::DT_FLOAT);
  1672. (*node_attr_map)[TENSORFLOW_ATTR_T] = dtype_attr_value;
  1673. //设置strides属性
  1674. domi::tensorflow::AttrValue axis_attr_value;
  1675. ::tensorflow::AttrValue_ListValue* list = axis_attr_value.mutable_list();
  1676. list->add_i(1);
  1677. list->add_i(2);
  1678. (*node_attr_map)[ge::SQUEEZE_ATTR_AXIS] = axis_attr_value;
  1679. domi::tensorflow::AttrValue value;
  1680. domi::tensorflow::AttrValue df_attr_value;
  1681. df_attr_value.set_i((int64_t)ccTensorFormat_t::CC_TENSOR_NHWC);
  1682. domi::tensorflow::AttrValue pad_attr_value;
  1683. pad_attr_value.set_i((int64_t)tensorflow::DT_FLOAT);
  1684. domi::tensorflow::AttrValue shape;
  1685. shape.mutable_list()->add_i((int64)32);
  1686. shape.mutable_list()->add_i((int64)32);
  1687. shape.mutable_list()->add_i((int64)14);
  1688. static const string KEY_TYPE_LIST = "key_type_list";
  1689. const std::string ATTR_NAME_INPUT_TENSOR_DESC = "input_tensor_desc";
  1690. const std::string ATTR_NAME_OUTPUT_TENSOR_DESC = "output_tensor_desc";
  1691. static const domi::tensorflow::DataType VALUE_TYPE = domi::tensorflow::DataType::DT_FLOAT;
  1692. value.clear_value();
  1693. value.mutable_list()->add_type(VALUE_TYPE);
  1694. TensorFlowUtil::AddNodeAttr(KEY_TYPE_LIST, value, node_def);
  1695. value.clear_value();
  1696. domi::tensorflow::NameAttrList name_attr_list;
  1697. name_attr_list.mutable_attr()->insert({"serialize_datatype", pad_attr_value});
  1698. name_attr_list.mutable_attr()->insert({"serialize_format", df_attr_value});
  1699. name_attr_list.mutable_attr()->insert({"serialize_shape", shape});
  1700. *(value.mutable_list()->add_func()) = name_attr_list;
  1701. node_def->mutable_attr()->insert({ge::ATTR_NAME_INPUT_TENSOR_DESC, value});
  1702. node_def->mutable_attr()->insert({ge::ATTR_NAME_OUTPUT_TENSOR_DESC, value});
  1703. ret = parser.CheckOpShapeDim(node_def, dims, valid);
  1704. EXPECT_EQ(ret, SUCCESS);
  1705. }
  1706. TEST_F(STestTensorflowParser, tensorflow_Scope_pass_test)
  1707. {
  1708. ScopePassManager passmanager;
  1709. auto scope_graph = ge::parser::MakeShared<ge::ScopeGraph>();
  1710. if (scope_graph == nullptr) {
  1711. GELOGE(FAILED, "Scope graph make shared failed.");
  1712. return;
  1713. }
  1714. if (scope_graph->Init() != SUCCESS) {
  1715. GELOGE(FAILED, "Scope graph init failed.");
  1716. return;
  1717. }
  1718. ge::TensorFlowModelParser tf_model_parser;
  1719. std::vector<string> scope_passes_list = {"pass_1", "pass_2"};
  1720. tf_model_parser.RunScopeFusionPass(scope_passes_list, passmanager, scope_graph);
  1721. Status ret = tf_model_parser.RunScopeFusionPass(scope_passes_list, passmanager, scope_graph);
  1722. EXPECT_NE(ge::SUCCESS, ret);
  1723. }
  1724. TEST_F(STestTensorflowParser, tensorflow_variable_v2_parser_test)
  1725. {
  1726. TensorFlowCustomParserAdapter parser;
  1727. ge::OpDescPtr op_dest = std::make_shared<ge::OpDesc>();
  1728. NodeDef *node_def = initNodeDef();
  1729. TensorFlowModelParser modelParser;
  1730. std::shared_ptr<OpParserFactory> factory = OpParserFactory::Instance(domi::TENSORFLOW);
  1731. std::shared_ptr<OpParser> op_parser = factory->CreateOpParser("Variable");
  1732. shared_ptr<TensorFlowOpParser> tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
  1733. Status ret = tensorflow_op_parser->ParseParams(node_def, op_dest);
  1734. EXPECT_EQ(ret, PARAM_INVALID);
  1735. node_def->set_name("TemporaryVariable");
  1736. node_def->set_op("TemporaryVariable");
  1737. op_parser = factory->CreateOpParser("TemporaryVariable");
  1738. tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
  1739. ret = tensorflow_op_parser->ParseParams(node_def, op_dest);
  1740. EXPECT_EQ(ret, PARAM_INVALID);
  1741. NodeDef *nodeDef_temporaryVariable = initOpNodeDef_TemporaryVariable();
  1742. op_parser = factory->CreateOpParser("TemporaryVariable");
  1743. tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
  1744. ret = tensorflow_op_parser->ParseParams(nodeDef_temporaryVariable, op_dest);
  1745. EXPECT_EQ(ret, SUCCESS);
  1746. NodeDef *nodeDef_VariableV2 = initOpNodeDef_VariableV2();
  1747. op_parser = factory->CreateOpParser("Variable");
  1748. tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
  1749. ret = tensorflow_op_parser->ParseParams(nodeDef_VariableV2, op_dest);
  1750. EXPECT_EQ(ret, SUCCESS);
  1751. }
  1752. TEST_F(STestTensorflowParser, tensorflow_var_is_initialized_op_test)
  1753. {
  1754. TensorFlowCustomParserAdapter parser;
  1755. ge::OpDescPtr op_dest = std::make_shared<ge::OpDesc>();
  1756. NodeDef *node_def = initNodeDef();
  1757. TensorFlowModelParser modelParser;
  1758. std::shared_ptr<OpParserFactory> factory = OpParserFactory::Instance(domi::TENSORFLOW);
  1759. std::shared_ptr<OpParser> op_parser = factory->CreateOpParser("VarIsInitializedOp");
  1760. shared_ptr<TensorFlowOpParser> tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
  1761. Status ret = tensorflow_op_parser->ParseParams(node_def, op_dest);
  1762. EXPECT_EQ(ret, SUCCESS);
  1763. }
  1764. TEST_F(STestTensorflowParser, tensorflow_arg_parser_test)
  1765. {
  1766. TensorFlowCustomParserAdapter parser;
  1767. ge::OpDescPtr op_dest = std::make_shared<ge::OpDesc>();
  1768. NodeDef *node_def = initNodeDef();
  1769. TensorFlowModelParser modelParser;
  1770. std::shared_ptr<OpParserFactory> factory = OpParserFactory::Instance(domi::TENSORFLOW);
  1771. std::shared_ptr<OpParser> op_parser = factory->CreateOpParser("_Arg");
  1772. shared_ptr<TensorFlowOpParser> tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
  1773. Status ret = tensorflow_op_parser->ParseParams(node_def, op_dest);
  1774. EXPECT_EQ(ret, SUCCESS);
  1775. static const string KEY_SHAPE_LIST = "key_shape_list";
  1776. static const string KEY_TENSOR_LIST = "key_tensor_list";
  1777. static const string KEY_DEFAULT = "key_default";
  1778. google::protobuf::Map<std::string, tensorflow::AttrValue> *node_attr_map = node_def->mutable_attr();
  1779. domi::tensorflow::AttrValue dtype_attr_value;
  1780. dtype_attr_value.set_type(domi::tensorflow::DT_FLOAT);
  1781. (*node_attr_map)[TENSORFLOW_ATTR_T] = dtype_attr_value;
  1782. //设置strides属性
  1783. domi::tensorflow::AttrValue axis_attr_value;
  1784. ::tensorflow::AttrValue_ListValue* list = axis_attr_value.mutable_list();
  1785. list->add_i(1);
  1786. list->add_i(2);
  1787. (*node_attr_map)[ge::SQUEEZE_ATTR_AXIS] = axis_attr_value;
  1788. domi::tensorflow::AttrValue value;
  1789. domi::tensorflow::AttrValue df_attr_value;
  1790. df_attr_value.set_i((int64_t)ccTensorFormat_t::CC_TENSOR_NHWC);
  1791. domi::tensorflow::AttrValue pad_attr_value;
  1792. pad_attr_value.set_i((int64_t)tensorflow::DT_FLOAT);
  1793. domi::tensorflow::AttrValue shape;
  1794. shape.mutable_list()->add_i((int64)32);
  1795. shape.mutable_list()->add_i((int64)32);
  1796. shape.mutable_list()->add_i((int64)14);
  1797. static const string KEY_TYPE_LIST = "key_type_list";
  1798. const std::string ATTR_NAME_INPUT_TENSOR_DESC = "input_tensor_desc";
  1799. const std::string ATTR_NAME_OUTPUT_TENSOR_DESC = "output_tensor_desc";
  1800. static const domi::tensorflow::DataType VALUE_TYPE = domi::tensorflow::DataType::DT_FLOAT;
  1801. value.clear_value();
  1802. value.mutable_list()->add_type(VALUE_TYPE);
  1803. TensorFlowUtil::AddNodeAttr(KEY_TYPE_LIST, value, node_def);
  1804. value.clear_value();
  1805. domi::tensorflow::NameAttrList name_attr_list;
  1806. name_attr_list.mutable_attr()->insert({"serialize_datatype", pad_attr_value});
  1807. name_attr_list.mutable_attr()->insert({"serialize_format", df_attr_value});
  1808. name_attr_list.mutable_attr()->insert({"serialize_shape", shape});
  1809. *(value.mutable_list()->add_func()) = name_attr_list;
  1810. node_def->mutable_attr()->insert({ge::ATTR_NAME_INPUT_TENSOR_DESC, value});
  1811. node_def->mutable_attr()->insert({ge::ATTR_NAME_OUTPUT_TENSOR_DESC, value});
  1812. ret = tensorflow_op_parser->ParseParams(node_def, op_dest);
  1813. EXPECT_EQ(ret, SUCCESS);
  1814. }
  1815. TEST_F(STestTensorflowParser, tensorflow_frameworkop_parser_test1)
  1816. {
  1817. TensorFlowCustomParserAdapter parser;
  1818. ge::OpDescPtr op_dest = std::make_shared<ge::OpDesc>();
  1819. NodeDef *node_def = initNodeDef();
  1820. TensorFlowModelParser modelParser;
  1821. std::shared_ptr<OpParserFactory> factory = OpParserFactory::Instance(domi::TENSORFLOW);
  1822. std::shared_ptr<OpParser> op_parser = factory->CreateOpParser("FrameworkOp");
  1823. shared_ptr<TensorFlowOpParser> tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
  1824. Status ret = tensorflow_op_parser->ParseParams(node_def, op_dest);
  1825. EXPECT_EQ(ret, PARAM_INVALID);
  1826. ChangeDataType(node_def, tensorflow::DT_UINT16);
  1827. ret = tensorflow_op_parser->ParseParams(node_def, op_dest);
  1828. EXPECT_EQ(ret, PARAM_INVALID);
  1829. }
  1830. TEST_F(STestTensorflowParser, tensorflow_frameworkop_parser_test2)
  1831. {
  1832. TensorFlowCustomParserAdapter parser;
  1833. ge::OpDescPtr op_dest = std::make_shared<ge::OpDesc>();
  1834. NodeDef *node_def = initNodeDef();
  1835. node_def->set_name("FrameworkOp");
  1836. node_def->set_op("_Retval");
  1837. TensorFlowModelParser modelParser;
  1838. std::shared_ptr<OpParserFactory> factory = OpParserFactory::Instance(domi::TENSORFLOW);
  1839. std::shared_ptr<OpParser> op_parser = factory->CreateOpParser("FrameworkOp");
  1840. shared_ptr<TensorFlowOpParser> tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
  1841. static const string KEY_SHAPE_LIST = "key_shape_list";
  1842. static const string KEY_TENSOR_LIST = "key_tensor_list";
  1843. static const string KEY_DEFAULT = "key_default";
  1844. google::protobuf::Map<std::string, tensorflow::AttrValue> *node_attr_map = node_def->mutable_attr();
  1845. domi::tensorflow::AttrValue dtype_attr_value;
  1846. dtype_attr_value.set_type(domi::tensorflow::DT_FLOAT);
  1847. (*node_attr_map)[TENSORFLOW_ATTR_T] = dtype_attr_value;
  1848. //设置strides属性
  1849. domi::tensorflow::AttrValue axis_attr_value;
  1850. ::tensorflow::AttrValue_ListValue* list = axis_attr_value.mutable_list();
  1851. list->add_i(1);
  1852. list->add_i(2);
  1853. (*node_attr_map)[ge::SQUEEZE_ATTR_AXIS] = axis_attr_value;
  1854. domi::tensorflow::AttrValue value;
  1855. domi::tensorflow::AttrValue df_attr_value;
  1856. df_attr_value.set_i((int64_t)ccTensorFormat_t::CC_TENSOR_NHWC);
  1857. domi::tensorflow::AttrValue pad_attr_value;
  1858. pad_attr_value.set_i((int64_t)tensorflow::DT_FLOAT);
  1859. domi::tensorflow::AttrValue shape;
  1860. shape.mutable_list()->add_i((int64)32);
  1861. shape.mutable_list()->add_i((int64)32);
  1862. shape.mutable_list()->add_i((int64)14);
  1863. static const string KEY_TYPE_LIST = "key_type_list";
  1864. const std::string ATTR_NAME_INPUT_TENSOR_DESC = "ATTR_NAME_FRAMEWORK_OP_DEF";
  1865. const std::string ATTR_NAME_OUTPUT_TENSOR_DESC = "output_tensor_desc";
  1866. static const domi::tensorflow::DataType VALUE_TYPE = domi::tensorflow::DataType::DT_FLOAT;
  1867. value.clear_value();
  1868. value.mutable_list()->add_type(VALUE_TYPE);
  1869. TensorFlowUtil::AddNodeAttr(KEY_TYPE_LIST, value, node_def);
  1870. value.clear_value();
  1871. domi::tensorflow::NameAttrList name_attr_list;
  1872. name_attr_list.mutable_attr()->insert({"serialize_datatype", pad_attr_value});
  1873. name_attr_list.mutable_attr()->insert({"serialize_format", df_attr_value});
  1874. name_attr_list.mutable_attr()->insert({"serialize_shape", shape});
  1875. *(value.mutable_list()->add_func()) = name_attr_list;
  1876. node_def->mutable_attr()->insert({ge::ATTR_NAME_INPUT_TENSOR_DESC, value});
  1877. node_def->mutable_attr()->insert({ge::ATTR_NAME_OUTPUT_TENSOR_DESC, value});
  1878. Status ret = tensorflow_op_parser->ParseParams(node_def, op_dest);
  1879. EXPECT_EQ(ret, SUCCESS);
  1880. }
  1881. TEST_F(STestTensorflowParser, tensorflow_reshape_parser_test)
  1882. {
  1883. TensorFlowCustomParserAdapter parser;
  1884. ge::OpDescPtr op_dest = std::make_shared<ge::OpDesc>();
  1885. NodeDef *node_def = initNodeDef();
  1886. TensorFlowModelParser modelParser;
  1887. std::shared_ptr<OpParserFactory> factory = OpParserFactory::Instance(domi::TENSORFLOW);
  1888. std::shared_ptr<OpParser> op_parser = factory->CreateOpParser("Reshape");
  1889. shared_ptr<TensorFlowOpParser> tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
  1890. Status ret = tensorflow_op_parser->ParseParams(node_def, op_dest);
  1891. EXPECT_EQ(ret, SUCCESS);
  1892. NodeDef * nodeDef = new NodeDef();
  1893. nodeDef->set_op("Reshape");
  1894. google::protobuf::Map< ::std::string, ::tensorflow::AttrValue >* node_attr_map = nodeDef->mutable_attr();
  1895. domi::tensorflow::AttrValue attr_value;
  1896. attr_value.mutable_list()->add_i((int64)32);
  1897. attr_value.mutable_list()->add_i((int64)32);
  1898. attr_value.mutable_list()->add_i((int64)14);
  1899. domi::tensorflow::AttrValue df_attr_value2;
  1900. df_attr_value2.set_s(TENSORFLOWF_TENSOR_NHWC);
  1901. (*node_attr_map)[TENSORFLOW_ATTR_DATA_FORMAT] = df_attr_value2;
  1902. domi::tensorflow::AttrValue df_attr_value;
  1903. df_attr_value.set_i((int64_t)ccTensorFormat_t::CC_TENSOR_NHWC);
  1904. //设置padding属性
  1905. domi::tensorflow::AttrValue pad_attr_value2;
  1906. pad_attr_value2.set_s(TENSORFLOWF_OP_PADDING_SAME);
  1907. (*node_attr_map)[TENSORFLOW_ATTR_PADDING] = pad_attr_value2;
  1908. domi::tensorflow::AttrValue pad_attr_value;
  1909. pad_attr_value.set_i((int64_t)tensorflow::DT_FLOAT);
  1910. domi::tensorflow::NameAttrList name_attr_list;
  1911. name_attr_list.mutable_attr()->insert({"serialize_shape", attr_value});
  1912. name_attr_list.mutable_attr()->insert({"serialize_format", df_attr_value});
  1913. name_attr_list.mutable_attr()->insert({"serialize_datatype", pad_attr_value});
  1914. *(attr_value.mutable_list()->add_func()) = name_attr_list;
  1915. GeTensorDesc ge_desc;
  1916. ge_desc.SetFormat(ge::FORMAT_C1HWNCoC0);
  1917. ge_desc.SetDataType(ge::DT_FLOAT);
  1918. ge_desc.SetShape(GeShape({1,1,1,1,1,1}));
  1919. TensorFlowReshapeParser reshapeParser;
  1920. ret = reshapeParser.ParseDesc(attr_value, ge_desc);
  1921. EXPECT_EQ(ret, SUCCESS);
  1922. }
  1923. TEST_F(STestTensorflowParser, tensorflow_DefunToPartitionedCall_parser_test)
  1924. {
  1925. TensorFlowModelParser parser;
  1926. NodeDef *node_def = initNodeDef();
  1927. node_def->set_name("ShapeN");
  1928. ge::OpDescPtr op = make_shared<ge::OpDesc>("ShapeN", ge::parser::PARTITIONEDCALL);
  1929. Status ret = parser.DefunToPartitionedCall(node_def, op);
  1930. EXPECT_EQ(ret, FAILED);
  1931. static const string KEY_SHAPE_LIST = "key_shape_list";
  1932. static const string KEY_TENSOR_LIST = "key_tensor_list";
  1933. static const string KEY_DEFAULT = "key_default";
  1934. google::protobuf::Map<std::string, tensorflow::AttrValue> *node_attr_map = node_def->mutable_attr();
  1935. domi::tensorflow::AttrValue dtype_attr_value;
  1936. dtype_attr_value.set_type(domi::tensorflow::DT_FLOAT);
  1937. (*node_attr_map)[TENSORFLOW_ATTR_T] = dtype_attr_value;
  1938. //设置strides属性
  1939. domi::tensorflow::AttrValue axis_attr_value;
  1940. ::tensorflow::AttrValue_ListValue* list = axis_attr_value.mutable_list();
  1941. list->add_i(1);
  1942. list->add_i(2);
  1943. (*node_attr_map)[ge::SQUEEZE_ATTR_AXIS] = axis_attr_value;
  1944. domi::tensorflow::AttrValue value;
  1945. domi::tensorflow::AttrValue df_attr_value;
  1946. df_attr_value.set_i((int64_t)ccTensorFormat_t::CC_TENSOR_NHWC);
  1947. domi::tensorflow::AttrValue pad_attr_value;
  1948. pad_attr_value.set_i((int64_t)tensorflow::DT_FLOAT);
  1949. domi::tensorflow::AttrValue shape;
  1950. shape.mutable_list()->add_i((int64)32);
  1951. shape.mutable_list()->add_i((int64)32);
  1952. shape.mutable_list()->add_i((int64)14);
  1953. static const string KEY_TYPE_LIST = "key_type_list";
  1954. static const domi::tensorflow::DataType VALUE_TYPE = domi::tensorflow::DataType::DT_FLOAT;
  1955. value.clear_value();
  1956. value.mutable_list()->add_type(VALUE_TYPE);
  1957. TensorFlowUtil::AddNodeAttr(KEY_TYPE_LIST, value, node_def);
  1958. value.clear_value();
  1959. domi::tensorflow::NameAttrList name_attr_list;
  1960. name_attr_list.mutable_attr()->insert({"serialize_datatype", pad_attr_value});
  1961. name_attr_list.mutable_attr()->insert({"serialize_format", df_attr_value});
  1962. name_attr_list.mutable_attr()->insert({"serialize_shape", shape});
  1963. *(value.mutable_list()->add_func()) = name_attr_list;
  1964. node_def->mutable_attr()->insert({"_disable_call_shape_inference", value});
  1965. node_def->mutable_attr()->insert({"_disable_call_shape_inference", value});
  1966. std::string fusion_op_name = "pre_node_a";
  1967. GenOriginContext(&parser, fusion_op_name);
  1968. node_def->set_name("pre_node_a");
  1969. ret = parser.DefunToPartitionedCall(node_def, op);
  1970. EXPECT_EQ(ret, SUCCESS);
  1971. }
  1972. TEST_F(STestTensorflowParser, tensorflow_TransNodeToOpDesc_parser_test)
  1973. {
  1974. TensorFlowModelParser parser;
  1975. NodeDef *node_def = initNodeDef();
  1976. node_def->set_name("ge::parser::DATA");
  1977. std::string op_type = "ge::parser::DATA";
  1978. ge::OpDescPtr op = make_shared<ge::OpDesc>("constant", ge::parser::CONSTANT);
  1979. Status ret = parser.TransNodeToOpDesc(node_def, op, op_type);
  1980. EXPECT_EQ(ret, FAILED);
  1981. }
  1982. domi::Status fusion_parse_param_by_op(const std::vector<ge::Operator> &op_src, ge::Operator &op) {
  1983. return domi::SUCCESS;
  1984. }
  1985. TEST_F(STestTensorflowParser, Fusion_node_parse_params_success) {
  1986. ge::ComputeGraphPtr compute_graph = std::make_shared<ge::ComputeGraph>(GRAPH_DEFAULT_NAME);
  1987. ModelParserFactory* factory = ModelParserFactory::Instance();
  1988. shared_ptr<ModelParser> model_parser= factory->CreateModelParser(domi::TENSORFLOW);
  1989. ASSERT_TRUE(NULL != model_parser);
  1990. TensorFlowModelParser tensorflow_parser;
  1991. domi::tensorflow::NodeDef node_def;
  1992. node_def.set_name("data");
  1993. node_def.set_op("FusionCustom");
  1994. FusionParseParamByOpFunc function = fusion_parse_param_by_op;
  1995. shared_ptr<ge::OpParserFactory> op_parser = ge::OpParserFactory::Instance(domi::TENSORFLOW);
  1996. shared_ptr<OpParser> fusion_op_parser = op_parser->CreateFusionOpParser("FusionCustom");
  1997. ge::ComputeGraphPtr graph = std::make_shared<ge::ComputeGraph>(GRAPH_DEFAULT_NAME);
  1998. ge::OpDescPtr op1 = std::make_shared<ge::OpDesc>("data", "FusionCustom");
  1999. ge::NodePtr node1 = std::make_shared<ge::Node>(op1, graph);
  2000. vector<const NodeDef *> node_defs;
  2001. node_defs.push_back(&node_def);
  2002. tensorflow_parser.fusion_op_nodedef_map_["data"] = node_defs;
  2003. Status ret = tensorflow_parser.FusionNodeParseParams(fusion_op_parser, &node_def, node1);
  2004. EXPECT_EQ(domi::SUCCESS, ret);
  2005. }
  2006. TEST_F(STestTensorflowParser, Tensorflow_recordFusionResult_parser_test)
  2007. {
  2008. auto scope_graph = ge::parser::MakeShared<ge::ScopeGraph>();
  2009. if (scope_graph == nullptr) {
  2010. GELOGE(FAILED, "Scope graph make shared failed.");
  2011. return;
  2012. }
  2013. if (scope_graph->Init() != SUCCESS) {
  2014. GELOGE(FAILED, "Scope graph init failed.");
  2015. return;
  2016. }
  2017. domi::tensorflow::NodeDef node_def;
  2018. node_def.set_name("OP");
  2019. FusionScopesResult *fusion_scope_rlt = new (std::nothrow) FusionScopesResult();
  2020. if (fusion_scope_rlt == nullptr) {
  2021. GELOGE(FAILED, "FusionScopesResult make shared failed.");
  2022. return;
  2023. }
  2024. fusion_scope_rlt->Init();
  2025. fusion_scope_rlt->SetName("OP");
  2026. auto &impl_scope_graph = scope_graph->impl_;
  2027. std::string scope_name = fusion_scope_rlt->Name();
  2028. impl_scope_graph->fusion_results_.insert(std::make_pair(scope_name, fusion_scope_rlt));
  2029. std::vector<ge::OperatorPtr> nodes;
  2030. ge::OperatorPtr op = ge::parser::MakeShared<ge::Operator>("op_name", "op_type");
  2031. if (op == nullptr) {
  2032. GELOGE(FAILED, "Operator make shared failed.");
  2033. return;
  2034. }
  2035. nodes.push_back(op);
  2036. fusion_scope_rlt->impl_->AddNodes(nodes);
  2037. ge::OpDescPtr opDesc = std::make_shared<ge::OpDesc>();
  2038. ge::TensorFlowModelParser tf_model_parser;
  2039. Status ret = tf_model_parser.RecordFusionResult(scope_graph, &node_def, opDesc);
  2040. EXPECT_EQ(SUCCESS, ret);
  2041. }
  2042. TEST_F(STestTensorflowParser, Tensorflow_UpdateFusionOpContext_test)
  2043. {
  2044. ModelParserFactory* factory = ModelParserFactory::Instance();
  2045. shared_ptr<domi::ModelParser> model_parser = factory->CreateModelParser(domi::TENSORFLOW);
  2046. TensorFlowModelParser tensorflow_parser;
  2047. ScopeFusionOpInfo info;
  2048. ge::OpNodeContext normal_op_node_context;
  2049. ge::OpNodeContext fusion_op_node_context;
  2050. /* 1.预置条件 */
  2051. tensorflow::GraphDef *graph = new tensorflow::GraphDef();
  2052. ScopePassManager passmanager;
  2053. shared_ptr<ScopeGraph> scope_graph = passmanager.BuildScopeGraph(graph);
  2054. NodeDef * node1 = graph->add_node();
  2055. node1->set_name("conv_conv5/BatchNorm/batchnorm/add");
  2056. node1->set_op("Add");
  2057. node1->add_input("conv_conv5/BatchNorm/moving_variance");
  2058. node1->add_input("conv_conv5/BatchNorm/batchnorm/add/y");
  2059. NodeDef * node2 = graph->add_node();
  2060. node2->set_name("conv_conv5/BatchNorm/moving_variance");
  2061. node2->set_op("Const");
  2062. NodeDef * node3 = graph->add_node();
  2063. node3->set_name("conv_conv5/BatchNorm/batchnorm/add/y");
  2064. node3->set_op("Const");
  2065. info.fusion_node_name = "conv_conv5/BatchNorm/batchnorm";
  2066. info.fusion_op_type = ge::parser::FUSIONBATCHNORM;
  2067. info.node_name = "conv_conv5/BatchNorm/batchnorm/add";
  2068. info.description = "";
  2069. info.scope_pass = false;
  2070. EXPECT_EQ(scope_graph->impl_->GetFusionScopesResults(nullptr), nullptr);
  2071. EXPECT_EQ(scope_graph->impl_->GetFusionScopesResults(node1), nullptr);
  2072. Status ret = tensorflow_parser.UpdateFusionOpContext(scope_graph, info, fusion_op_node_context, normal_op_node_context);
  2073. EXPECT_EQ(ret, domi::SUCCESS);
  2074. delete graph;
  2075. }
  2076. TEST_F(STestTensorflowParser, Tensorflow_GetInOutPutIndex_scope_pass)
  2077. {
  2078. ModelParserFactory* factory = ModelParserFactory::Instance();
  2079. shared_ptr<domi::ModelParser> model_parser = factory->CreateModelParser(domi::TENSORFLOW);
  2080. TensorFlowModelParser tensorflow_parser;
  2081. tensorflow::GraphDef *graph = new tensorflow::GraphDef();
  2082. ScopePassManager passmanager;
  2083. shared_ptr<ScopeGraph> scope_graph = passmanager.BuildScopeGraph(graph);
  2084. FusionScopesResult* fusion_rlt = new FusionScopesResult();
  2085. fusion_rlt->Init();
  2086. fusion_rlt->impl_->inputs_.insert(std::make_pair<string, vector<int32_t>>("fw/fw/ToInt32" ,{0}));
  2087. fusion_rlt->impl_->inputs_.insert(std::make_pair<string, vector<int32_t>>("bw/bw/ToInt32" ,{0}));
  2088. fusion_rlt->impl_->inputs_.insert(std::make_pair<string, vector<int32_t>>("bw/ReverseSequence" ,{0, 1}));
  2089. fusion_rlt->impl_->inputs_.insert(std::make_pair<string, vector<int32_t>>("bw/ReverseSequence" ,{1}));
  2090. fusion_rlt->impl_->outputs_.insert(std::make_pair<string, vector<int32_t>>("concat" ,{0}));
  2091. fusion_rlt->impl_->outputs_.insert(std::make_pair<string, vector<int32_t>>("fw/fw/while/Exit_3" ,{1}));
  2092. fusion_rlt->impl_->outputs_.insert(std::make_pair<string, vector<int32_t>>("fw/fw/while/Exit_4" ,{2}));
  2093. fusion_rlt->impl_->outputs_.insert(std::make_pair<string, vector<int32_t>>("bw/bw/while/Exit_3" ,{3}));
  2094. fusion_rlt->impl_->outputs_.insert(std::make_pair<string, vector<int32_t>>("bw/bw/while/Exit_4" ,{4}));
  2095. fusion_rlt->SetType("dynamic_rnn");
  2096. fusion_rlt->SetName("dynamic_rnn_node1");
  2097. scope_graph->impl_->AddFusionScopesResult(fusion_rlt);
  2098. ScopeFusionOpInfo info1;
  2099. info1.node_name = "fw/fw/ToInt32";
  2100. info1.fusion_node_name = "dynamic_rnn_node1";
  2101. info1.fusion_op_type = "dynamic_rnn";
  2102. info1.description = "";
  2103. info1.scope_pass = true;
  2104. bool ignore = false;
  2105. ignore = tensorflow_parser.FusionOpChildIgnore(scope_graph, info1);
  2106. EXPECT_EQ(true, !ignore);
  2107. ScopeFusionOpInfo info2;
  2108. info2.node_name = "fw/fw/others";
  2109. info2.fusion_node_name = "dynamic_rnn_node1";
  2110. info2.fusion_op_type = "dynamic_rnn";
  2111. info2.description = "";
  2112. info2.scope_pass = true;
  2113. ignore = tensorflow_parser.FusionOpChildIgnore(scope_graph, info2);
  2114. EXPECT_EQ(true, ignore);
  2115. ScopeFusionOpInfo input_node_info;
  2116. input_node_info.node_name = "fw/fw/ToInt32";
  2117. input_node_info.fusion_node_name = "dynamic_rnn_node1";
  2118. input_node_info.fusion_op_type = "dynamic_rnn";
  2119. input_node_info.description = "";
  2120. input_node_info.scope_pass = true;
  2121. ScopeFusionOpInfo output_node_info;
  2122. output_node_info.node_name = "fw/fw/while/Exit_3";
  2123. output_node_info.fusion_node_name = "dynamic_rnn_node1";
  2124. output_node_info.fusion_op_type = "dynamic_rnn";
  2125. output_node_info.description = "";
  2126. output_node_info.scope_pass = true;
  2127. int32_t old_index = 0, new_index = -1;
  2128. Status ret = tensorflow_parser.GetInPutIndex(scope_graph, input_node_info, old_index, new_index);
  2129. EXPECT_EQ(domi::SUCCESS, ret);
  2130. EXPECT_EQ(true, (new_index == 0));
  2131. ret = tensorflow_parser.GetOutPutIndex(scope_graph, output_node_info, old_index, new_index);
  2132. EXPECT_EQ(domi::SUCCESS, ret);
  2133. EXPECT_EQ(true, (new_index == 1));
  2134. delete graph;
  2135. }
  2136. TEST_F(STestTensorflowParser, Tensorflow_AddFusionNodeDef_add_fusion_op_succ)
  2137. {
  2138. ModelParserFactory* factory = ModelParserFactory::Instance();
  2139. shared_ptr<domi::ModelParser> model_parser = factory->CreateModelParser(domi::TENSORFLOW);
  2140. TensorFlowModelParser tensorflow_parser;
  2141. string fusion_op_name = "dropout";
  2142. string fusion_op_type = "Dropout";
  2143. string description = "test/dropout";
  2144. tensorflow_parser.fusion_op_type_map_[fusion_op_name].push_back(fusion_op_type);
  2145. tensorflow_parser.fusion_op_type_map_[fusion_op_name].push_back(description);
  2146. // op_node_context for fusion op
  2147. ge::OpNodeContext op_node_context;
  2148. op_node_context.input_map["pre_node_a"].push_back({0, 0});
  2149. op_node_context.input_map["pre_node_b"].push_back({0, 1});
  2150. tensorflow_parser.op_node_context_map_[fusion_op_name] = op_node_context;
  2151. // origin inner node def
  2152. NodeDef* node_def = new (std::nothrow) NodeDef();
  2153. node_def->set_name("scope_node_1");
  2154. node_def->set_op("Add");
  2155. tensorflow_parser.fusion_op_nodedef_map_[fusion_op_name].push_back(node_def);
  2156. ScopePassManager pass_manager;
  2157. tensorflow::GraphDef *graph = new (std::nothrow) tensorflow::GraphDef();
  2158. shared_ptr<ScopeGraph> scope_graph = pass_manager.BuildScopeGraph(graph);
  2159. vector<string> node_name_list = {fusion_op_name};
  2160. Status ret = tensorflow_parser.AddFusionNodeDef(scope_graph, node_name_list);
  2161. EXPECT_EQ(ret, SUCCESS);
  2162. EXPECT_EQ(tensorflow_parser.nodedef_map_.size(), 1);
  2163. auto fusion_node_def = tensorflow_parser.nodedef_map_[fusion_op_name];
  2164. EXPECT_NE(fusion_node_def, nullptr);
  2165. EXPECT_EQ(fusion_node_def->op(), fusion_op_type);
  2166. delete node_def;
  2167. delete graph;
  2168. tensorflow_parser.DeleteFuisonNodeDef();
  2169. }
  2170. TEST_F(STestTensorflowParser, remain_dpop_node)
  2171. {
  2172. ge::ComputeGraphPtr graph = std::make_shared<ge::ComputeGraph>(GRAPH_DEFAULT_NAME);
  2173. ge::OpDescPtr op = std::make_shared<ge::OpDesc>("dpop_123", "FrameworkOp");
  2174. ge::NodePtr node = std::make_shared<ge::Node>(op, graph);
  2175. graph->AddNode(node);
  2176. ModelParserFactory* factory = ModelParserFactory::Instance();
  2177. shared_ptr<domi::ModelParser> model_parser= factory->CreateModelParser(domi::TENSORFLOW);
  2178. ASSERT_TRUE(NULL != model_parser);
  2179. TensorFlowModelParser tensorflow_parser;
  2180. Status ret = tensorflow_parser.RemoveIsolateNode(graph);
  2181. EXPECT_EQ(domi::SUCCESS, ret);
  2182. }
  2183. TEST_F(STestTensorflowParser, tensorflow_UpdateEdgesControlInfo_test)
  2184. {
  2185. TensorFlowModelParser model_parser;
  2186. ge::ScopeFusionOpInfo info;
  2187. info.fusion_node_name = "conv_conv5/BatchNorm/batchnorm";
  2188. info.fusion_op_type = ge::parser::FUSIONBATCHNORM;
  2189. info.node_name = "conv_conv5/BatchNorm/batchnorm/add";
  2190. info.description = "";
  2191. info.scope_pass = false;
  2192. model_parser.UpdateEdgesControlInfo(info);
  2193. }
  2194. TEST_F(STestTensorflowParser, tensorflow_OptimizeIdentityByOutput_test)
  2195. {
  2196. TensorFlowModelParser model_parser;
  2197. NodeDef *node_def = new NodeDef();
  2198. node_def->set_name("Placeholder");
  2199. node_def->set_op("Placeholder_0");
  2200. std::map<string, NodeDef *> nodedef_map;
  2201. nodedef_map.emplace("Placeholder", node_def);
  2202. std::string curr_node_name = "Placeholder";
  2203. bool clear_input_flag = true;
  2204. Status ret = model_parser.OptimizeIdentityByOutput(nodedef_map, curr_node_name, clear_input_flag);
  2205. EXPECT_EQ(ret, INTERNAL_ERROR);
  2206. GraphDef graph;
  2207. curr_node_name = "pre_node_a";
  2208. nodedef_map.emplace("pre_node_a", node_def);
  2209. node_def->set_op("pre_node_a");
  2210. GenOriginContext(&model_parser, curr_node_name);
  2211. ret = model_parser.OptimizeIdentityByOutput(nodedef_map, curr_node_name, clear_input_flag);
  2212. EXPECT_EQ(ret, SUCCESS);
  2213. delete node_def;
  2214. }
  2215. TEST_F(STestTensorflowParser, tensorflow_OptimizeSnapShot_test)
  2216. {
  2217. TensorFlowModelParser model_parser;
  2218. tensorflow::NodeDef *curr_mode_def = initNodeDef();
  2219. std::map<string, NodeDef *> nodedef_map;
  2220. nodedef_map.emplace("pre_node_a", curr_mode_def);
  2221. std::pair<string, int> input_data;
  2222. std::vector<string> control_list;
  2223. std::string curr_node_name = "pre_node_a";
  2224. GenOriginContext(&model_parser, curr_node_name);
  2225. Status ret = model_parser.OptimizeSnapShot(curr_mode_def, nodedef_map, input_data, control_list);
  2226. EXPECT_EQ(ret, INTERNAL_ERROR);
  2227. curr_mode_def->set_name("pre_node_a");
  2228. GenOriginContext(&model_parser, curr_node_name);
  2229. ret = model_parser.OptimizeSnapShot(curr_mode_def, nodedef_map, input_data, control_list);
  2230. EXPECT_EQ(ret, SUCCESS);
  2231. }
  2232. TEST_F(STestTensorflowParser, tensorflow_GraphDefOptimizeSnapShot_test)
  2233. {
  2234. TensorFlowModelParser model_parser;
  2235. tensorflow::GraphDef graph_def;
  2236. tensorflow::NodeDef *curr_mode_def = initNodeDef();
  2237. std::map<string, NodeDef *> nodedef_map;
  2238. nodedef_map.emplace("pre_node_a", curr_mode_def);
  2239. std::vector<NodeDef *> nodedef_to_optimize;
  2240. nodedef_to_optimize.emplace_back(curr_mode_def);
  2241. Status ret = model_parser.GraphDefOptimizeSnapShot(&graph_def, nodedef_map, nodedef_to_optimize);
  2242. EXPECT_EQ(ret, FAILED);
  2243. }
  2244. TEST_F(STestTensorflowParser, tensorflow_SetDestNodeName_test)
  2245. {
  2246. TensorFlowModelParser model_parser;
  2247. GraphDef graph;
  2248. auto arg0 = AddNode(graph, "_Arg", "arg0");
  2249. auto identity0 = AddNode(graph, "Identity", "identity0");
  2250. auto add0 = AddNode(graph, "Add", "add0");
  2251. int32_t input_idx = 0;
  2252. bool is_control = true;
  2253. bool clear_input_flag = true;
  2254. AddInput(arg0, identity0, 0);
  2255. AddInput(identity0, add0, 0);
  2256. Status ret = model_parser.SetDestNodeName(identity0, add0, input_idx, is_control, clear_input_flag);
  2257. EXPECT_EQ(ret, SUCCESS);
  2258. }
  2259. TEST_F(STestTensorflowParser, tensorflow_OptimizeDestroyTemporaryVariable_test)
  2260. {
  2261. ModelParserFactory* factory = ModelParserFactory::Instance();
  2262. shared_ptr<domi::ModelParser> model_parser= factory->CreateModelParser(domi::TENSORFLOW);
  2263. TensorFlowModelParser tensorflow_parser;
  2264. GraphDef graph;
  2265. auto const0 = AddNode(graph, "Const", "Const0");
  2266. auto tmpVar0 = AddNode(graph, "TemporaryVariable", "TemporaryVariable0");
  2267. auto assign0 = AddNode(graph, "Assign", "Assign0");
  2268. auto destroy0 = AddNode(graph, "DestroyTemporaryVariable", "DestroyTemporaryVariable0");
  2269. auto add0 = AddNode(graph, "Add", "Add0");
  2270. google::protobuf::Map< std::string, tensorflow::AttrValue> *node_attr_map = tmpVar0->mutable_attr();
  2271. tensorflow::AttrValue var_name_attr_value;
  2272. var_name_attr_value.set_s("temporary_variable_name");
  2273. (*node_attr_map)[ge::VAR_ATTR_NAME] = var_name_attr_value;
  2274. google::protobuf::Map<std::string, tensorflow::AttrValue>* node_attr_map_destroy = destroy0->mutable_attr();
  2275. tensorflow::AttrValue var_name_attr_value_destroy;
  2276. var_name_attr_value_destroy.set_s("destroy_temporary_variable_name");
  2277. (*node_attr_map_destroy)[ge::VAR_ATTR_NAME] = var_name_attr_value_destroy;
  2278. AddInput(tmpVar0, assign0, 0);
  2279. AddInput(assign0, destroy0, 0);
  2280. AddInput(const0, add0, 0);
  2281. AddInput(destroy0, add0, 1);
  2282. GraphDef* graphDef = &graph;
  2283. int32_t no_input_node_size_original = 0;
  2284. for (int w = 0; w < graphDef->node_size(); w++) {
  2285. tensorflow::NodeDef* nodeTmp = graphDef->mutable_node(w);
  2286. if (nodeTmp->input_size() == 0) {
  2287. no_input_node_size_original++;
  2288. }
  2289. }
  2290. Status ret = tensorflow_parser.GraphDefOptimize(graphDef);
  2291. int32_t no_input_node_size_result = 0;
  2292. for (int w = 0; w < graphDef->node_size(); w++) {
  2293. tensorflow::NodeDef* nodeTmp = graphDef->mutable_node(w);
  2294. if (nodeTmp->input_size() == 0) {
  2295. no_input_node_size_result ++;
  2296. }
  2297. }
  2298. ASSERT_EQ(ret, domi::FAILED);
  2299. ASSERT_EQ(no_input_node_size_original, no_input_node_size_result);
  2300. }
  2301. TEST_F(STestTensorflowParser, tensorflow_OptimizeDestroyTemporaryVariable_test2)
  2302. {
  2303. ModelParserFactory* factory = ModelParserFactory::Instance();
  2304. shared_ptr<domi::ModelParser> model_parser= factory->CreateModelParser(domi::TENSORFLOW);
  2305. TensorFlowModelParser tensorflow_parser;
  2306. GraphDef graph;
  2307. auto const0 = AddNode(graph, "Const", "Const0");
  2308. auto tmpVar0 = AddNode(graph, "TemporaryVariable", "TemporaryVariable0");
  2309. auto assign0 = AddNode(graph, "Assign", "Assign0");
  2310. auto destroy0 = AddNode(graph, "DestroyTemporaryVariable", "DestroyTemporaryVariable0");
  2311. auto add0 = AddNode(graph, "Add", "Add0");
  2312. google::protobuf::Map<std::string, tensorflow::AttrValue> *node_attr_map = tmpVar0->mutable_attr();
  2313. tensorflow::AttrValue var_name_attr_value;
  2314. var_name_attr_value.set_s("temporary_variable_name");
  2315. (*node_attr_map)[ge::VAR_ATTR_NAME] = var_name_attr_value;
  2316. google::protobuf::Map<std::string, tensorflow::AttrValue> *node_attr_map_destroy = destroy0->mutable_attr();
  2317. tensorflow::AttrValue var_name_attr_value_destroy;
  2318. var_name_attr_value_destroy.set_s("temporary_variable_name");
  2319. (*node_attr_map_destroy)[ge::VAR_ATTR_NAME] = var_name_attr_value_destroy;
  2320. AddInput(tmpVar0, assign0, 0);
  2321. AddInput(assign0, destroy0, 0);
  2322. AddInput(const0, add0, 0);
  2323. AddInput(destroy0, add0, 1);
  2324. GraphDef* graphDef = &graph;
  2325. int32_t no_input_node_size_original = 0;
  2326. for (int w = 0; w < graphDef->node_size(); w++) {
  2327. tensorflow::NodeDef* nodeTmp = graphDef->mutable_node(w);
  2328. if (nodeTmp->input_size() == 0) {
  2329. no_input_node_size_original ++;
  2330. }
  2331. }
  2332. Status ret = tensorflow_parser.GraphDefOptimize(graphDef);
  2333. int32_t no_input_node_size_result = 0;
  2334. for (int w = 0; w < graphDef->node_size(); w++) {
  2335. tensorflow::NodeDef* nodeTmp = graphDef->mutable_node(w);
  2336. if (nodeTmp->input_size() == 0) {
  2337. no_input_node_size_result ++;
  2338. }
  2339. }
  2340. ASSERT_EQ(ret, domi::SUCCESS);
  2341. ASSERT_EQ(no_input_node_size_original, (no_input_node_size_result - 1));
  2342. }
  2343. TEST_F(STestTensorflowParser, tensorflow_AddControlEdgeAfterRemoveInputs_test)
  2344. {
  2345. tensorflow::GraphDef graph_def;
  2346. TensorFlowModelParser tensorflow_parser;
  2347. tensorflow::NodeDef *node_def = initNodeDef();
  2348. node_def->set_name("Add0");
  2349. node_def->set_op("add");
  2350. std::map<std::string, NodeDef *> all_node_map;
  2351. all_node_map.emplace("Add0", node_def);
  2352. std::vector<std::string> removed_inputs_vec;
  2353. removed_inputs_vec.emplace_back("Add0");
  2354. Status ret = tensorflow_parser.AddControlEdgeAfterRemoveInputs(&graph_def, node_def, all_node_map, removed_inputs_vec);
  2355. EXPECT_EQ(ret, SUCCESS);
  2356. }
  2357. TEST_F(STestTensorflowParser, tensorflow_GraphDefOptimizeIdentity_test)
  2358. {
  2359. tensorflow::GraphDef graph_def;
  2360. TensorFlowModelParser tensorflow_parser;
  2361. tensorflow::NodeDef *node_def = initNodeDef();
  2362. node_def->set_name("post_node_d");
  2363. std::map<string, NodeDef *> nodedef_map;
  2364. nodedef_map.emplace("post_node_d", node_def);
  2365. nodedef_map.emplace("post_node_a", node_def);
  2366. nodedef_map.emplace("post_node_b", node_def);
  2367. std::vector<NodeDef *> nodedef_to_optimize;
  2368. nodedef_to_optimize.emplace_back(node_def);
  2369. std::string curr_node_name = "post_node_b";
  2370. GenOriginContext(&tensorflow_parser, curr_node_name);
  2371. Status ret = tensorflow_parser.GraphDefOptimizeIdentity(&graph_def, nodedef_map, nodedef_to_optimize);
  2372. EXPECT_EQ(ret, ge::PARAM_INVALID);
  2373. }
  2374. TEST_F(STestTensorflowParser, tensorflow_optimizer_snapshot_no_retval_test) {
  2375. std::string caseDir = __FILE__;
  2376. std::size_t idx = caseDir.find_last_of("/");
  2377. caseDir = caseDir.substr(0, idx);
  2378. const std::string root_proto = caseDir + "/origin_models/test_snapshot.pb";
  2379. domi::tensorflow::GraphDef graphDef;
  2380. bool protoRet =
  2381. parser::ReadProtoFromBinaryFile(root_proto.c_str(), &graphDef);
  2382. ASSERT_EQ(protoRet, true);
  2383. TensorFlowModelParser tensorflow_parser;
  2384. ge::ComputeGraphPtr root_graph =
  2385. ge::parser::MakeShared<ge::ComputeGraph>("tmp_graph");
  2386. Status ret = tensorflow_parser.ParseProto(
  2387. reinterpret_cast<google::protobuf::Message *>(&graphDef), root_graph);
  2388. EXPECT_EQ(FAILED, ret);
  2389. }
  2390. TEST_F(STestTensorflowParser, tensorflow_RemoveInputs_test)
  2391. {
  2392. tensorflow::GraphDef graph_def;
  2393. tensorflow::NodeDef *node_def = initNodeDef();
  2394. node_def->set_name("OP");
  2395. node_def->add_input("OP/Input_1");
  2396. node_def->add_input("OP/Input_2");
  2397. std::set<uint32_t> remove_index_set;
  2398. std::map<std::string, NodeDef *> all_node_map;
  2399. TensorFlowModelParser model_parser;
  2400. Status ret = model_parser.RemoveInputs(&graph_def, node_def, remove_index_set, all_node_map);
  2401. EXPECT_EQ(ret, SUCCESS);
  2402. remove_index_set.emplace(0);
  2403. ret = model_parser.RemoveInputs(&graph_def, node_def, remove_index_set, all_node_map);
  2404. EXPECT_EQ(ret, FAILED);
  2405. }
  2406. TEST_F(STestTensorflowParser, tensorflow_UpdateInnerNodeContext_test)
  2407. {
  2408. std::string fusion_op_name = "post_node_a";
  2409. std::vector<std::string> inner_nodes_name;
  2410. inner_nodes_name.emplace_back("post_node_a");
  2411. TensorFlowModelParser model_parser;
  2412. Status ret = model_parser.UpdateInnerNodeContext(fusion_op_name, inner_nodes_name);
  2413. EXPECT_EQ(ret, INTERNAL_ERROR);
  2414. GenOriginContext(&model_parser, fusion_op_name);
  2415. ret = model_parser.UpdateInnerNodeContext(fusion_op_name, inner_nodes_name);
  2416. EXPECT_EQ(ret, SUCCESS);
  2417. }
  2418. TEST_F(STestTensorflowParser, tensorflow_UpdateInnerInputMap_test)
  2419. {
  2420. string fusion_op_name = "post_node_a";
  2421. OpNodeContext fusion_context;
  2422. std::vector<std::string> inner_nodes_name;
  2423. inner_nodes_name.emplace_back("post_node_a");
  2424. std::set<string> fusion_input_nodes;
  2425. fusion_input_nodes.insert("post_node_a");
  2426. TensorFlowModelParser model_parser;
  2427. GenOriginContext(&model_parser, fusion_op_name);
  2428. model_parser.UpdateInnerInputMap(fusion_op_name, fusion_context, inner_nodes_name, fusion_input_nodes);
  2429. }
  2430. TEST_F(STestTensorflowParser, tensorflow_UpdateInnerOutputMap_test)
  2431. {
  2432. string fusion_op_name = "post_node_a";
  2433. OpNodeContext fusion_context;
  2434. std::vector<std::string> inner_nodes_name;
  2435. inner_nodes_name.emplace_back("post_node_a");
  2436. std::set<string> fusion_output_nodes;
  2437. fusion_output_nodes.insert("post_node_a");
  2438. TensorFlowModelParser model_parser;
  2439. GenOriginContext(&model_parser, fusion_op_name);
  2440. model_parser.UpdateInnerOutputMap(fusion_op_name, fusion_context, inner_nodes_name, fusion_output_nodes);
  2441. }
  2442. TEST_F(STestTensorflowParser, tensorflow_ScopePassManager_AddPass_test)
  2443. {
  2444. ScopePassManager passmanager;
  2445. tensorflow::GraphDef *graph = new tensorflow::GraphDef();
  2446. shared_ptr<ScopeGraph> scope_graph = passmanager.BuildScopeGraph(graph);
  2447. unique_ptr<ScopeBasePass> pass;
  2448. pass.reset(new ScopeTestPass());
  2449. EXPECT_EQ(ge::SUCCESS, passmanager.AddPass(pass));
  2450. EXPECT_NE(ge::SUCCESS, passmanager.Run(scope_graph));
  2451. delete graph;
  2452. graph = nullptr;
  2453. }
  2454. TEST_F(STestTensorflowParser, tensorflow_CheckAttrHasType_test1)
  2455. {
  2456. tensorflow::AttrValue attr_value;
  2457. attr_value.mutable_list();
  2458. Status ret = TensorFlowUtil::CheckAttrHasType(attr_value, "int");
  2459. EXPECT_EQ(FAILED, ret);
  2460. attr_value.set_type(DT_INVALID);
  2461. ret = TensorFlowUtil::CheckAttrHasType(attr_value, "type");
  2462. EXPECT_EQ(FAILED, ret);
  2463. tensorflow::AttrValue attr_value2;
  2464. AttrValue_ListValue *list = attr_value2.mutable_list();
  2465. list->add_type(tensorflow::DT_FLOAT);
  2466. list->add_type((tensorflow::DataType)30);
  2467. ret = TensorFlowUtil::CheckAttrHasType(attr_value2, "list(type)");
  2468. EXPECT_EQ(FAILED, ret);
  2469. }
  2470. TEST_F(STestTensorflowParser, tensorflow_CheckAttrHasType_test2)
  2471. {
  2472. tensorflow::AttrValue attr_value;
  2473. AttrValue_ListValue * list = attr_value.mutable_list();
  2474. list->add_type(tensorflow::DT_FLOAT);
  2475. list->add_type(tensorflow::DT_INVALID);
  2476. Status ret = TensorFlowUtil::CheckAttrHasType(attr_value, "list(type)");
  2477. EXPECT_EQ(FAILED, ret);
  2478. attr_value.set_placeholder("test");
  2479. ret = TensorFlowUtil::CheckAttrHasType(attr_value, "");
  2480. EXPECT_EQ(FAILED, ret);
  2481. }
  2482. TEST_F(STestTensorflowParser, tensorflow_TransTensorDescriptor_test)
  2483. {
  2484. tensorflow::AttrValue attr_value;
  2485. AttrValue_ListValue *list = attr_value.mutable_list();
  2486. list->add_type(tensorflow::DT_FLOAT);
  2487. ParserOperator op;
  2488. uint32_t io = TENSORFLOW_NORMAL_INPUT_TENSOR_FLAG;
  2489. std::string type = ge::parser::FUSEDBATCHNORMGRAD;
  2490. Status ret = TensorFlowUtil::TransTensorDescriptor(attr_value, &op, io, type);
  2491. EXPECT_EQ(ret, SUCCESS);
  2492. io = TENSORFLOW_NORMAL_OUTPUT_TENSOR_FLAG;
  2493. ret = TensorFlowUtil::TransTensorDescriptor(attr_value, &op, io, type);
  2494. EXPECT_EQ(ret, SUCCESS);
  2495. }
  2496. TEST_F(STestTensorflowParser, tensorflow_GraphDefOptimizeDestroyTemporaryVariable_test)
  2497. {
  2498. tensorflow::GraphDef *graph_def = nullptr;
  2499. tensorflow::NodeDef *nodeCurrent = initNodeDef();
  2500. TensorFlowModelParser model_parser;
  2501. Status ret = model_parser.GraphDefOptimizeDestroyTemporaryVariable(graph_def, nodeCurrent);
  2502. EXPECT_EQ(ret, FAILED);
  2503. }
  2504. TEST_F(STestTensorflowParser, tensorflow_GetFunctionProto_test)
  2505. {
  2506. std::cout << __FILE__ << std::endl;
  2507. std::string caseDir = __FILE__;
  2508. std::size_t idx = caseDir.find_last_of("/");
  2509. caseDir = caseDir.substr(0, idx);
  2510. std::string file = caseDir + "/origin_models/test_enter.pb";
  2511. domi::tensorflow::GraphDefLibrary graph_def_library;
  2512. TensorFlowModelParser model_parser;
  2513. Status ret = model_parser.GetFunctionProto(file, graph_def_library);
  2514. EXPECT_EQ(ret, FAILED);
  2515. }
  2516. TEST_F(STestTensorflowParser, tensorflow_GetNodeFormat_test)
  2517. {
  2518. NodeDef *node_def1 = initNodeDef();
  2519. node_def1->set_op("NoOp");
  2520. node_def1->set_name("NoOp");
  2521. NodeDef *node_def2 = initNodeDef();
  2522. node_def2->set_op("Add");
  2523. node_def2->set_name("Add0");
  2524. TfTranspose pred_transpose = TO_NCHW;
  2525. domiTensorFormat_t format = domi::DOMI_TENSOR_NC1HWC0;
  2526. std::set<const NodeDef *> visited_node;
  2527. visited_node.emplace(node_def2);
  2528. TensorFlowModelParser model_parser;
  2529. Status ret = model_parser.GetNodeFormat(node_def1, pred_transpose, format, visited_node);
  2530. EXPECT_EQ(ret, FAILED);
  2531. delete node_def1;
  2532. delete node_def2;
  2533. }
  2534. TEST_F(STestTensorflowParser, tensorflow_GetFormatTranspose_test)
  2535. {
  2536. NodeDef *transpose_node = initNodeDef();
  2537. transpose_node->set_op("Transpose");
  2538. TfTranspose transpose_direc = NO_TRANSPOSE;
  2539. TensorFlowModelParser modelParser;
  2540. Status ret = modelParser.GetFormatTranspose(transpose_node, transpose_direc);
  2541. EXPECT_EQ(ret, FAILED);
  2542. ge::TensorFlowModelParser parser;
  2543. GraphDef graph;
  2544. auto arg0 = AddNode(graph, "_Arg", "arg0");
  2545. auto snapshot0 = AddNode(graph, "Snapshot", "snapshot0");
  2546. auto ret0 = AddNode(graph, "_Retval", "retval0");
  2547. auto arg1 = AddNode(graph, "_Arg", "arg1");
  2548. auto snapshot1 = AddNode(graph, "Snapshot", "snapshot1");
  2549. auto ret1 = AddNode(graph, "_Retval", "retval1");
  2550. auto arg2 = AddNode(graph, "_Arg", "arg2");
  2551. auto snapshot2 = AddNode(graph, "Snapshot", "snapshot2");
  2552. auto ret2 = AddNode(graph, "_Retval", "retval2");
  2553. AddInput(arg0, snapshot0, 0);
  2554. AddInput(snapshot0, ret0, 0);
  2555. AddInput(arg1, snapshot1, 0);
  2556. AddInput(snapshot1, ret1, 0);
  2557. AddInput(arg2, snapshot2, 0);
  2558. AddInput(snapshot2, ret2, 0);
  2559. AddInput(snapshot0, snapshot1, -1);
  2560. AddInput(snapshot1, snapshot2, -1);
  2561. ASSERT_EQ(parser.GraphDefOptimize(&graph), domi::SUCCESS);
  2562. ASSERT_EQ(ret1->input_size(), 2);
  2563. ret = modelParser.GetFormatTranspose(ret1, transpose_direc);
  2564. EXPECT_EQ(ret, SUCCESS);
  2565. delete transpose_node;
  2566. }
  2567. TEST_F(STestTensorflowParser, tensorflow_GetTensorflowGraphInOutMap_test)
  2568. {
  2569. TensorFlowModelParser model_parser;
  2570. tensorflow::GraphDef *graph = new tensorflow::GraphDef();
  2571. tensorflow::NodeDef *node_input = graph->add_node();
  2572. node_input->set_name("name_input");
  2573. node_input->set_op("op_input");
  2574. AddGraphNode(graph, "t_lstm/t_lstm_cell/Sigmoid5", "Sigmoid", "node_input");
  2575. AddGraphNode(graph, "t_lstm/t_lstm_cell/Sigmoid6", "Sigmoid", "node_input");
  2576. AddGraphNode(graph, "t_lstm/t_lstm_cell/Sigmoid7", "Sigmoid", "node_input");
  2577. AddGraphNode(graph, "t_lstm/t_lstm_cell/Mul5", "Mul", "node_input");
  2578. AddGraphNode(graph, "t_lstm/t_lstm_cell/Mul6", "Mul", "node_input");
  2579. AddGraphNode(graph, "t_lstm/t_lstm_cell/Mul7", "Mul", "node_input");
  2580. AddGraphNode(graph, "t_lstm/t_lstm_cell/Relu5", "Relu", "node_input");
  2581. AddGraphNode(graph, "t_lstm/t_lstm_cell/Relu6", "Relu", "node_input");
  2582. Status ret = model_parser.GetTensorflowGraphInOutMap(graph);
  2583. EXPECT_EQ(ret, SUCCESS);
  2584. delete graph;
  2585. }
  2586. TEST_F(STestTensorflowParser, tensorflow_RemoveIsolateNode_test)
  2587. {
  2588. TensorFlowModelParser model_parser;
  2589. tensorflow::GraphDef graph;
  2590. CreateGraphDef(graph);
  2591. Status ret = model_parser.RemoveIsolateNode(&graph);
  2592. EXPECT_EQ(ret, FAILED);
  2593. }
  2594. TEST_F(STestTensorflowParser, tensorflow_AddNodeToGraphAndMarkFormat_test)
  2595. {
  2596. TensorFlowModelParser model_parser;
  2597. ComputeGraphPtr graph = make_shared<ge::ComputeGraph>("default");
  2598. std::vector<std::string> op_node_name_list = {"Const", "placeholder0"};
  2599. GenOriginNodeDef(&model_parser, op_node_name_list);
  2600. Status ret = model_parser.AddNodeToGraphAndMarkFormat(graph, op_node_name_list);
  2601. EXPECT_EQ(ret, INTERNAL_ERROR);
  2602. }
  2603. TEST_F(STestTensorflowParser, tensorflow_ParserNodeDef1_test)
  2604. {
  2605. ge::ComputeGraphPtr compute_graph = std::make_shared<ge::ComputeGraph>(GRAPH_DEFAULT_NAME);
  2606. ModelParserFactory* factory = ModelParserFactory::Instance();
  2607. shared_ptr<ModelParser> model_parser= factory->CreateModelParser(domi::TENSORFLOW);
  2608. ASSERT_TRUE(NULL != model_parser);
  2609. TensorFlowModelParser tensorflow_parser;
  2610. tensorflow_parser.adaptedOpTypeMap_["test_name"] = "POOLING";
  2611. std::mutex graphMutex;
  2612. tensorflow::GraphDef *graph = new tensorflow::GraphDef();
  2613. ScopePassManager passmanager;
  2614. shared_ptr<ScopeGraph> scope_graph = passmanager.BuildScopeGraph(graph);
  2615. domi::tensorflow::NodeDef node_def;
  2616. node_def.set_name("test_name");
  2617. node_def.set_op("POOLING");
  2618. error_message::Context error_context;
  2619. Status ret = ge::TensorFlowModelParser::ParseNodeDef(&tensorflow_parser, compute_graph, &graphMutex, scope_graph, &node_def, error_context);
  2620. EXPECT_EQ(FAILED, ret);
  2621. delete graph;
  2622. }
  2623. TEST_F(STestTensorflowParser, tensorflow_ParserNodeDef2_test)
  2624. {
  2625. ge::ComputeGraphPtr compute_graph = std::make_shared<ge::ComputeGraph>(GRAPH_DEFAULT_NAME);
  2626. ModelParserFactory* factory = ModelParserFactory::Instance();
  2627. shared_ptr<ModelParser> model_parser= factory->CreateModelParser(domi::TENSORFLOW);
  2628. ASSERT_TRUE(NULL != model_parser);
  2629. TensorFlowModelParser tensorflow_parser;
  2630. tensorflow_parser.adaptedOpTypeMap_["Pooling"] = "Pooling";
  2631. std::mutex graphMutex;
  2632. tensorflow::GraphDef *graph = new tensorflow::GraphDef();
  2633. ScopePassManager passmanager;
  2634. shared_ptr<ScopeGraph> scope_graph = passmanager.BuildScopeGraph(graph);
  2635. REGISTER_CUSTOM_OP("Pooling")
  2636. .FrameworkType(domi::TENSORFLOW)
  2637. .OriginOpType("Pooling")
  2638. .ParseParamsFn(ParseParams)
  2639. .ImplyType(ImplyType::TVM);
  2640. register_tbe_op();
  2641. domi::tensorflow::NodeDef node_def;
  2642. node_def.set_name("Pooling");
  2643. node_def.set_op("Pooling");
  2644. error_message::Context error_context;
  2645. Status ret = ge::TensorFlowModelParser::ParseNodeDef(&tensorflow_parser, compute_graph, &graphMutex, scope_graph, &node_def, error_context);
  2646. EXPECT_EQ(FAILED, ret);
  2647. delete graph;
  2648. }
  2649. TEST_F(STestTensorflowParser, tensorflow_AddExternalGraph_test)
  2650. {
  2651. TensorFlowModelParser modelParser;
  2652. ge::ComputeGraphPtr subGraph = std::make_shared<ge::ComputeGraph>("default");
  2653. std::string inputNodeType = "DATA";
  2654. MakeDagGraph(subGraph, inputNodeType);
  2655. Status ret = modelParser.AddExternalGraph(subGraph);
  2656. EXPECT_EQ(ret, SUCCESS);
  2657. }
  2658. TEST_F(STestTensorflowParser, tensorflow_AddFmkNode_test)
  2659. {
  2660. TensorFlowModelParser model_parser;
  2661. ge::ComputeGraphPtr compute_graph = std::make_shared<ge::ComputeGraph>(GRAPH_DEFAULT_NAME);
  2662. tensorflow::GraphDef *graphDef = new (std::nothrow) tensorflow::GraphDef();
  2663. ScopePassManager pass_manager;
  2664. std::shared_ptr<ScopeGraph> scope_graph = pass_manager.BuildScopeGraph(graphDef);
  2665. std::vector<std::string> op_node_name_list = {"Const", "placeholder0"};
  2666. GenOriginNodeDef(&model_parser, op_node_name_list);
  2667. Status ret = model_parser.AddFmkNode(compute_graph, scope_graph, op_node_name_list, false);
  2668. EXPECT_EQ(ret, PARAM_INVALID);
  2669. delete graphDef;
  2670. }
  2671. TEST_F(STestTensorflowParser, tensorflow_OptimizeConstNodes4CustomOp_test)
  2672. {
  2673. TensorFlowModelParser model_parser;
  2674. tensorflow::GraphDef graph_def;
  2675. CreateGraphDef(graph_def);
  2676. Status ret = model_parser.OptimizeConstNodes4CustomOp(&graph_def);
  2677. EXPECT_EQ(ret, SUCCESS);
  2678. }
  2679. TEST_F(STestTensorflowParser, tensorflow_ParseOpParams_test)
  2680. {
  2681. TensorFlowModelParser model_parser;
  2682. tensorflow::NodeDef *node_def = initNodeDef();
  2683. node_def->set_name("Pooling");
  2684. node_def->set_op("Pooling");
  2685. ge::OpDescPtr op = std::make_shared<ge::OpDesc>();
  2686. std::shared_ptr<OpParserFactory> factory = OpParserFactory::Instance(domi::TENSORFLOW);
  2687. std::shared_ptr<OpParser> op_parser = factory->CreateOpParser("Pooling");
  2688. Status ret = model_parser.ParseOpParams(node_def, op, op_parser);
  2689. EXPECT_EQ(ret, FAILED);
  2690. node_def->set_name("TensorArrayWrite");
  2691. node_def->set_op("TensorArrayWriteV3");
  2692. op_parser = factory->CreateOpParser("TensorArrayWrite");
  2693. ret = model_parser.ParseOpParams(node_def, op, op_parser);
  2694. EXPECT_EQ(ret, SUCCESS);
  2695. delete node_def;
  2696. }
  2697. TEST_F(STestTensorflowParser, tensorflow_AddFusionInnerNodeDef_test)
  2698. {
  2699. TensorFlowModelParser model_parser;
  2700. ge::ComputeGraphPtr compute_graph = std::make_shared<ge::ComputeGraph>(GRAPH_DEFAULT_NAME);
  2701. tensorflow::GraphDef *graphDef = new (std::nothrow) tensorflow::GraphDef();
  2702. ScopePassManager pass_manager;
  2703. std::shared_ptr<ScopeGraph> scope_graph = pass_manager.BuildScopeGraph(graphDef);
  2704. std::vector<std::string> op_node_name_list = {"Const", "placeholder0"};
  2705. FusionScopesResult *fusion_scope_rlt = new (std::nothrow) FusionScopesResult();
  2706. fusion_scope_rlt->Init();
  2707. fusion_scope_rlt->SetName("FusionCustom");
  2708. auto &impl_scope_graph = scope_graph->impl_;
  2709. std::string scope_name = fusion_scope_rlt->Name();
  2710. impl_scope_graph->fusion_results_.insert(std::make_pair(scope_name, fusion_scope_rlt));
  2711. std::string fusion_op_name = "FusionCustom";
  2712. GenOriginNodeDef(&model_parser, op_node_name_list);
  2713. GenFusionScopesResult(scope_graph, fusion_scope_rlt, fusion_op_name);
  2714. Status ret = model_parser.AddFusionInnerNodeDef(scope_graph, fusion_op_name, op_node_name_list);
  2715. EXPECT_EQ(ret, INTERNAL_ERROR);
  2716. delete graphDef;
  2717. }
  2718. TEST_F(STestTensorflowParser, Scope_pass_test)
  2719. {
  2720. ScopePassManager passmanager;
  2721. tensorflow::GraphDef *graph = new tensorflow::GraphDef();
  2722. shared_ptr<ScopeGraph> scope_graph = passmanager.BuildScopeGraph(graph);
  2723. EXPECT_NE(nullptr, scope_graph);
  2724. unique_ptr<ScopeBasePass> pass;
  2725. pass.reset(new ScopeTestPass());
  2726. EXPECT_EQ(domi::SUCCESS, passmanager.AddPass(pass));
  2727. scope_graph = passmanager.BuildScopeGraph(graph);
  2728. EXPECT_NE(nullptr, scope_graph);
  2729. delete graph;
  2730. }
  2731. TEST_F(STestTensorflowParser, operator_attr_set_and_get)
  2732. {
  2733. TestOperator test_operator;
  2734. test_operator.Name("test_op");
  2735. EXPECT_EQ("test_op" , test_operator.GetName());
  2736. test_operator.Input(test_operator, 0);
  2737. test_operator.Input(test_operator, 1);
  2738. test_operator.GetOpAttrs();
  2739. int64_t pad = 1;
  2740. test_operator.Attr("pad", pad);
  2741. EXPECT_EQ(pad , test_operator.GetIntAttr("pad"));
  2742. bool bool_value = true;
  2743. test_operator.Attr("bool_value", bool_value);
  2744. EXPECT_EQ(bool_value , test_operator.GetBoolAttr("bool_value"));
  2745. float float_value = true;
  2746. test_operator.Attr("float_value", float_value);
  2747. EXPECT_EQ(float_value , test_operator.GetFloatAttr("float_value"));
  2748. std::string str_value = "test_string";
  2749. test_operator.Attr("str_value", str_value);
  2750. EXPECT_EQ(str_value , test_operator.GetStringAttr("str_value"));
  2751. BoolTuple boollist_value{true, false};
  2752. test_operator.Attr("boollist_value", boollist_value);
  2753. BoolTuple get_boollist_value = test_operator.GetBoolTupleAttr("boollist_value");
  2754. EXPECT_EQ(boollist_value[0] , get_boollist_value[0]);
  2755. StringTuple strlist_value{"a", "b"};
  2756. test_operator.Attr("strlist_value", strlist_value);
  2757. StringTuple get_strlist_value = test_operator.GetStringTupleAttr("strlist_value");
  2758. EXPECT_EQ(strlist_value[0] , get_strlist_value[0]);
  2759. int64_t num = 1;
  2760. IntTuple intlist{num, num};
  2761. test_operator.Attr("intlist", intlist);
  2762. IntTuple get_intlist = test_operator.GetIntTupleAttr("intlist");
  2763. EXPECT_EQ(intlist[0] , get_intlist[0]);
  2764. FloatTuple floatlist{1.1, 1.1};
  2765. test_operator.Attr("floatlist", floatlist);
  2766. FloatTuple get_floatlist = test_operator.GetFloatTupleAttr("floatlist");
  2767. EXPECT_EQ(floatlist[0] , get_floatlist[0]);
  2768. ge::OpDescPtr op_desc = std::make_shared<ge::OpDesc>();
  2769. ParserOperator *op = &test_operator;
  2770. Status ret = ConvertToOpDesc(*op, op_desc);
  2771. EXPECT_EQ(domi::SUCCESS , ret);
  2772. TestOperator test_operator_1;
  2773. ParserOperator *op_convert = &test_operator_1;
  2774. ret = ConvertFromOpDesc(op_desc, *op_convert);
  2775. EXPECT_EQ(domi::SUCCESS , ret);
  2776. op_desc = nullptr;
  2777. ret = ConvertFromOpDesc(op_desc, *op_convert);
  2778. EXPECT_EQ(FAILED , ret);
  2779. ret = ConvertToOpDesc(*op, op_desc);
  2780. EXPECT_EQ(FAILED, ret);
  2781. }
  2782. TEST_F(STestTensorflowParser, success_frameworkop_get)
  2783. {
  2784. FrameworkOpOperator *frameworkOp=new FrameworkOpOperator();
  2785. int64_t index = 1;
  2786. std::string opdef_string = "tensorflow_parser";
  2787. frameworkOp->GetFrameworkType();
  2788. frameworkOp->GetNodeDefPkg();
  2789. frameworkOp->FuncDefPkg("func");
  2790. frameworkOp->Index(index);
  2791. frameworkOp->TfOpDef(opdef_string);
  2792. EXPECT_EQ(SUCCESS, SUCCESS);
  2793. delete frameworkOp;
  2794. }
  2795. TEST_F(STestTensorflowParser, op_set_get_success)
  2796. {
  2797. ConstantOperator op;
  2798. vector<int64_t> v;
  2799. op.VectorAttr("key", v);
  2800. op.GetDType();
  2801. }
  2802. TEST_F(STestTensorflowParser, success_argop_get)
  2803. {
  2804. ArgOpOperator *argOp=new ArgOpOperator();
  2805. int64_t index = 1;
  2806. argOp->Index(index);
  2807. argOp->GetIndex();
  2808. EXPECT_EQ(domi::SUCCESS, SUCCESS);
  2809. delete argOp;
  2810. }
  2811. TEST_F(STestTensorflowParser, success_operator)
  2812. {
  2813. ParserOperator tfOperator;
  2814. ParserOperator in_op;
  2815. uint32_t index = 0;
  2816. std::string type = "add";
  2817. std::string key = "Add";
  2818. std::vector<int64_t> value;
  2819. int64_t tmp = 0;
  2820. value.emplace_back(tmp);
  2821. tfOperator.Input(in_op, index);
  2822. tfOperator.Type(type);
  2823. tfOperator.AttrVector(key, value);
  2824. }
  2825. TEST_F(STestTensorflowParser, success_shapen_get)
  2826. {
  2827. ShapeNOperator *shapen =new ShapeNOperator();
  2828. shapen->GetInType();
  2829. shapen->GetInType();
  2830. shapen->GetOutType();
  2831. EXPECT_EQ(domi::SUCCESS, domi::SUCCESS);
  2832. delete shapen;
  2833. }
  2834. TEST_F(STestTensorflowParser, success_VarIsInitializedOpOperator_get)
  2835. {
  2836. VarIsInitializedOpOperator op;
  2837. op.Name("x");
  2838. std::vector<int64_t> value;
  2839. op.VectorAttr("key", value);
  2840. }
  2841. TEST_F(STestTensorflowParser, success_variable_op_get)
  2842. {
  2843. VariableOperator op;
  2844. uint32_t mem_type = 1;
  2845. op.Name("x");
  2846. std::vector<int64_t> value;
  2847. op.Placement("shared_name");
  2848. op.MemType(mem_type);
  2849. }
  2850. TEST_F(STestTensorflowParser, param_success_get)
  2851. {
  2852. FillOperator* fillOp=new FillOperator();
  2853. fillOp->GetDataType();
  2854. fillOp->GetAlpha();
  2855. fillOp->GetBeta();
  2856. EXPECT_EQ(domi::SUCCESS, domi::SUCCESS);
  2857. delete fillOp;
  2858. }
  2859. TEST_F(STestTensorflowParser, tensorflow_Message2Operator_ParseOperatorAttrs_test)
  2860. {
  2861. Message2Operator mess2Op;
  2862. tensorflow::NodeDef *node_def = initNodeDef();
  2863. int depth = 6;
  2864. ge::OpDescPtr op_desc = std::make_shared<ge::OpDesc>();
  2865. ge::Operator ops = ge::OpDescUtils::CreateOperatorFromOpDesc(op_desc);
  2866. Status ret = mess2Op.ParseOperatorAttrs(node_def, depth, ops);
  2867. EXPECT_EQ(ret, FAILED);
  2868. depth = 4;
  2869. ret = mess2Op.ParseOperatorAttrs(node_def, depth, ops);
  2870. EXPECT_EQ(ret, SUCCESS);
  2871. }
  2872. TEST_F(STestTensorflowParser, tensorflow_Pb2Json_RepeatedEnum2Json_test)
  2873. {
  2874. Pb2Json toJson;
  2875. ProtobufEnumValueDescriptor *enum_value_desc = new google::protobuf::EnumValueDescriptor();
  2876. bool enum2str = true;
  2877. Json json;
  2878. ProtobufFieldDescriptor *field = nullptr;
  2879. toJson.RepeatedEnum2Json(enum_value_desc, enum2str, json);
  2880. toJson.Enum2Json(enum_value_desc, field, enum2str, json);
  2881. enum2str = false;
  2882. toJson.RepeatedEnum2Json(enum_value_desc, enum2str, json);
  2883. delete enum_value_desc;
  2884. }
  2885. TEST_F(STestTensorflowParser, tensorflow_Pb2Json_TypeBytes2String_test)
  2886. {
  2887. Pb2Json toJson;
  2888. std::string field_name = "offset";
  2889. std::string type_bytes = "offset";
  2890. toJson.TypeBytes2String(field_name, type_bytes);
  2891. field_name = "test";
  2892. toJson.TypeBytes2String(field_name, type_bytes);
  2893. }
  2894. TEST_F(STestTensorflowParser, tensorflow_Pb2Json_RepeatedMessage2Json_test)
  2895. {
  2896. Pb2Json toJson;
  2897. tensorflow::NodeDef *node_def = initNodeDef();
  2898. ProtobufFieldDescriptor *field = new google::protobuf::FieldDescriptor();
  2899. ProtobufReflection *reflection = nullptr;
  2900. set<string> black_fields;
  2901. black_fields.emplace("offset");
  2902. Json json;
  2903. bool enum2str = true;
  2904. toJson.RepeatedMessage2Json((*node_def), field, reflection, black_fields, json, enum2str);
  2905. delete field;
  2906. }
  2907. TEST_F(STestTensorflowParser, tensorflow_Pb2Json_OneField2Json_test)
  2908. {
  2909. Pb2Json toJson;
  2910. tensorflow::NodeDef *node_def = initNodeDef();
  2911. ProtobufFieldDescriptor *field = new google::protobuf::FieldDescriptor();
  2912. ProtobufReflection *reflection = nullptr;
  2913. set<string> black_fields;
  2914. black_fields.emplace("offset");
  2915. Json json;
  2916. bool enum2str = true;
  2917. Message2Operator mess2Op;
  2918. int depth = 4;
  2919. ge::OpDescPtr op_desc = std::make_shared<ge::OpDesc>("FusionCustom", "FusionCustom");
  2920. ge::Operator ops = ge::OpDescUtils::CreateOperatorFromOpDesc(op_desc);
  2921. field->CppTypeName(google::protobuf::FieldDescriptor::CPPTYPE_ENUM);
  2922. mess2Op.ParseField(reflection, node_def, field, depth, ops);
  2923. toJson.OneField2Json((*node_def), field, reflection, black_fields, json, enum2str);
  2924. delete field;
  2925. }
  2926. } // namespace ge