# --- # jupyter: # jupytext_format_version: '1.2' # kernelspec: # display_name: Python 3 # language: python # name: python3 # language_info: # codemirror_mode: # name: ipython # version: 3 # file_extension: .py # mimetype: text/x-python # name: python # nbconvert_exporter: python # pygments_lexer: ipython3 # version: 3.5.2 # --- # ## Datasets # ## Moons # # + % matplotlib inline import numpy as np from sklearn import datasets import matplotlib.pyplot as plt # generate sample data np.random.seed(0) X, y = datasets.make_moons(200, noise=0.20) # plot data plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral) plt.show() # - # ## XOR # + import numpy as np import matplotlib.pyplot as plt from sklearn.gaussian_process import GaussianProcessClassifier rng = np.random.RandomState(0) X = rng.randn(200, 2) Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0) # plot data plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Spectral) plt.show() # - # ## Digital # + import matplotlib.pyplot as plt from sklearn.datasets import load_digits # load data digits = load_digits() # copied from notebook 02_sklearn_data.ipynb fig = plt.figure(figsize=(6, 6)) # figure size in inches fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05) # plot the digits: each image is 8x8 pixels for i in range(64): ax = fig.add_subplot(8, 8, i + 1, xticks=[], yticks=[]) ax.imshow(digits.images[i], cmap=plt.cm.binary) # label the image with the target value ax.text(0, 7, str(digits.target[i]))