| @@ -0,0 +1,99 @@ | |||||
| import torch | |||||
| import torch.nn as nn | |||||
| import torch.nn.functional as F | |||||
| from torch.autograd import Variable | |||||
| from torchvision import datasets, transforms | |||||
| # Training settings | |||||
| batch_size = 64 | |||||
| # MNIST Dataset | |||||
| dataset_path = "../data/mnist" | |||||
| train_dataset = datasets.MNIST(root=dataset_path, | |||||
| train=True, | |||||
| transform=transforms.ToTensor(), | |||||
| download=True) | |||||
| test_dataset = datasets.MNIST(root=dataset_path, | |||||
| train=False, | |||||
| transform=transforms.ToTensor()) | |||||
| # Data Loader (Input Pipeline) | |||||
| train_loader = torch.utils.data.DataLoader(dataset=train_dataset, | |||||
| batch_size=batch_size, | |||||
| shuffle=True) | |||||
| test_loader = torch.utils.data.DataLoader(dataset=test_dataset, | |||||
| batch_size=batch_size, | |||||
| shuffle=False) | |||||
| # Define the network | |||||
| class Net_CNN(nn.Module): | |||||
| def __init__(self): | |||||
| super(Net_CNN, self).__init__() | |||||
| self.conv1 = nn.Conv2d(1, 6, 5) | |||||
| self.conv2 = nn.Conv2d(6, 16, 5) | |||||
| self.fc1 = nn.Linear(16*4*4, 120) | |||||
| self.fc2 = nn.Linear(120, 84) | |||||
| self.fc3 = nn.Linear(84, 10) | |||||
| def forward(self, x): | |||||
| x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) | |||||
| x = F.max_pool2d(F.relu(self.conv2(x)), 2) | |||||
| x = x.view(x.size()[0], -1) | |||||
| x = F.relu(self.fc1(x)) | |||||
| x = F.relu(self.fc2(x)) | |||||
| x = self.fc3(x) | |||||
| return x | |||||
| # define optimizer & criterion | |||||
| model = Net_CNN() | |||||
| optim = torch.optim.Adam(model.parameters(), 0.01) | |||||
| criterion = nn.CrossEntropyLoss() | |||||
| # train the network | |||||
| for e in range(100): | |||||
| # train | |||||
| model.train() | |||||
| for batch_idx, (data, target) in enumerate(train_loader): | |||||
| data, target = Variable(data), Variable(target) | |||||
| out = model(data) | |||||
| loss = criterion(out, target) | |||||
| optim.zero_grad() | |||||
| loss.backward() | |||||
| optim.step() | |||||
| if batch_idx % 100 == 0: | |||||
| pred = out.data.max(1, keepdim=True)[1] | |||||
| c = float(pred.eq(target.data.view_as(pred)).cpu().sum() ) /out.size(0) | |||||
| print("epoch: %5d, loss: %f, acc: %f" % | |||||
| ( e +1, loss.data[0], c)) | |||||
| # test | |||||
| model.eval() | |||||
| test_loss = 0.0 | |||||
| correct = 0.0 | |||||
| for data, target in test_loader: | |||||
| data, target = Variable(data), Variable(target) | |||||
| output = model(data) | |||||
| # sum up batch loss | |||||
| test_loss += criterion(output, target).data[0] | |||||
| # get the index of the max | |||||
| pred = output.data.max(1, keepdim=True)[1] | |||||
| correct += float(pred.eq(target.data.view_as(pred)).cpu().sum()) | |||||
| test_loss /= len(test_loader.dataset) | |||||
| print("\nTest set: Average loss: %.4f, Accuracy: %6d/%6d (%4.2f %%)\n" % | |||||
| (test_loss, | |||||
| correct, len(test_loader.dataset), | |||||
| 100.0*correct / len(test_loader.dataset)) ) | |||||
| @@ -0,0 +1,99 @@ | |||||
| import torch | |||||
| import torch.nn as nn | |||||
| import torch.nn.functional as F | |||||
| from torch.autograd import Variable | |||||
| from torchvision import datasets, transforms | |||||
| # Training settings | |||||
| batch_size = 64 | |||||
| # MNIST Dataset | |||||
| dataset_path = "../data/mnist" | |||||
| train_dataset = datasets.MNIST(root=dataset_path, | |||||
| train=True, | |||||
| transform=transforms.ToTensor(), | |||||
| download=True) | |||||
| test_dataset = datasets.MNIST(root=dataset_path, | |||||
| train=False, | |||||
| transform=transforms.ToTensor()) | |||||
| # Data Loader (Input Pipeline) | |||||
| train_loader = torch.utils.data.DataLoader(dataset=train_dataset, | |||||
| batch_size=batch_size, | |||||
| shuffle=True) | |||||
| test_loader = torch.utils.data.DataLoader(dataset=test_dataset, | |||||
| batch_size=batch_size, | |||||
| shuffle=False) | |||||
| # Define the network | |||||
| class Net_CNN(nn.Module): | |||||
| def __init__(self): | |||||
| super(Net_CNN, self).__init__() | |||||
| self.conv1 = nn.Conv2d(1, 6, 5) | |||||
| self.conv2 = nn.Conv2d(6, 16, 5) | |||||
| self.conv2_drop = nn.Dropout2d() | |||||
| self.fc1 = nn.Linear(16*4*4, 120) | |||||
| self.fc2 = nn.Linear(120, 10) | |||||
| def forward(self, x): | |||||
| x = F.relu(F.max_pool2d(F.relu(self.conv1(x)), (2, 2))) | |||||
| x = F.relu(F.max_pool2d(F.relu(self.conv2_drop(self.conv2(x))), 2)) | |||||
| x = x.view(x.size()[0], -1) | |||||
| x = F.relu(self.fc1(x)) | |||||
| x = F.dropout(x, training=self.training) | |||||
| x = self.fc2(x) | |||||
| return x | |||||
| # define optimizer & criterion | |||||
| model = Net_CNN() | |||||
| optim = torch.optim.Adam(model.parameters(), 0.01) | |||||
| criterion = nn.CrossEntropyLoss() | |||||
| # train the network | |||||
| for e in range(100): | |||||
| # train | |||||
| model.train() | |||||
| for batch_idx, (data, target) in enumerate(train_loader): | |||||
| data, target = Variable(data), Variable(target) | |||||
| out = model(data) | |||||
| loss = criterion(out, target) | |||||
| optim.zero_grad() | |||||
| loss.backward() | |||||
| optim.step() | |||||
| if batch_idx % 100 == 0: | |||||
| pred = out.data.max(1, keepdim=True)[1] | |||||
| c = float(pred.eq(target.data.view_as(pred)).cpu().sum() ) /out.size(0) | |||||
| print("epoch: %5d, loss: %f, acc: %f" % | |||||
| ( e +1, loss.data[0], c)) | |||||
| # test | |||||
| model.eval() | |||||
| test_loss = 0.0 | |||||
| correct = 0.0 | |||||
| for data, target in test_loader: | |||||
| data, target = Variable(data), Variable(target) | |||||
| output = model(data) | |||||
| # sum up batch loss | |||||
| test_loss += criterion(output, target).data[0] | |||||
| # get the index of the max | |||||
| pred = output.data.max(1, keepdim=True)[1] | |||||
| correct += float(pred.eq(target.data.view_as(pred)).cpu().sum()) | |||||
| test_loss /= len(test_loader.dataset) | |||||
| print("\nTest set: Average loss: %.4f, Accuracy: %6d/%6d (%4.2f %%)\n" % | |||||
| (test_loss, | |||||
| correct, len(test_loader.dataset), | |||||
| 100.0*correct / len(test_loader.dataset)) ) | |||||
| @@ -0,0 +1,66 @@ | |||||
| import torch | |||||
| import torch.nn as nn | |||||
| import torch.nn.functional as F | |||||
| import torch.optim as optim | |||||
| from torch.autograd import Variable | |||||
| from torchvision import datasets, transforms | |||||
| # Training settings | |||||
| batch_size = 64 | |||||
| # MNIST Dataset | |||||
| dataset_path = "../data/mnist" | |||||
| train_dataset = datasets.MNIST(root=dataset_path, | |||||
| train=True, | |||||
| transform=transforms.ToTensor(), | |||||
| download=True) | |||||
| test_dataset = datasets.MNIST(root=dataset_path, | |||||
| train=False, | |||||
| transform=transforms.ToTensor()) | |||||
| # Data Loader (Input Pipeline) | |||||
| train_loader = torch.utils.data.DataLoader(dataset=train_dataset, | |||||
| batch_size=batch_size, | |||||
| shuffle=True) | |||||
| test_loader = torch.utils.data.DataLoader(dataset=test_dataset, | |||||
| batch_size=batch_size, | |||||
| shuffle=False) | |||||
| # define Network | |||||
| seq_net = nn.Sequential( | |||||
| nn.Linear(28*28, 300), | |||||
| nn.ReLU(), | |||||
| nn.Linear(300, 100), | |||||
| nn.ReLU(), | |||||
| nn.Linear(100, 10) | |||||
| ) | |||||
| # define optimizer & criterion | |||||
| param = seq_net.parameters() | |||||
| optim = torch.optim.Adam(param, 0.01) | |||||
| criterion = nn.CrossEntropyLoss() | |||||
| # train the network | |||||
| for e in range(100): | |||||
| for batch_idx, (data, target) in enumerate(train_loader): | |||||
| data, target = Variable(data), Variable(target) | |||||
| data = data.view(-1, 784) | |||||
| out = seq_net(data) | |||||
| loss = criterion(out, target) | |||||
| optim.zero_grad() | |||||
| loss.backward() | |||||
| optim.step() | |||||
| if batch_idx % 100 == 0: | |||||
| pred = out.data.max(1, keepdim=True)[1] | |||||
| c = float(pred.eq(target.data.view_as(pred)).cpu().sum())/out.size(0) | |||||
| print("epoch: %5d, loss: %f, acc: %f" % | |||||
| (e+1, loss.data[0], c)) | |||||