From e4c2bb746bd2e92ee4202ec16f1cb43e6f790f17 Mon Sep 17 00:00:00 2001 From: bushuhui Date: Wed, 9 Sep 2020 16:48:10 +0800 Subject: [PATCH] Improve course description --- README.md | 25 ++++++++++++++----------- 1 file changed, 14 insertions(+), 11 deletions(-) diff --git a/README.md b/README.md index 5694f8e..a6214f5 100644 --- a/README.md +++ b/README.md @@ -1,8 +1,8 @@ # 机器学习 -本教程主要讲解机器学习的基本原理与实现,通过本教程的引导来快速学习Python、Python常用库、机器学习的理论知识与实际编程,并学习如何解决实际问题。 +机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识、实际编程,并学习如何解决实际问题。 -由于**本课程需要大量的编程练习才能取得比较好的学习效果**,因此需要认真去完成[作业和报告](https://gitee.com/pi-lab/machinelearning_homework),写作业的过程可以查阅网上的资料,但是不能直接照抄,需要自己独立思考并独立写出代码。 +由于**本课程需要大量的编程练习才能取得比较好的学习效果**,因此需要认真去完成[《机器学习-作业和报告》](https://gitee.com/pi-lab/machinelearning_homework),写作业的过程可以查阅网上的资料,但是不能直接照抄,需要自己独立思考并独立写出代码。 ![Machine Learning Cover](images/machine_learning.png) @@ -69,11 +69,15 @@ ## 2. 学习的建议 -1. 为了更好的学习本课程,需要大家把Python编程的基础能力培养好,这样后续的机器学习方法学习才比较扎实。 -2. 每个课程前部分是理论基础,然后是代码实现。个人如果想学的更扎实,可以自己把各个方法的代码亲自实现一下。做的过程尽可能自己想解决办法,因为重要的学习目标不是代码本身,而是学会分析问题、解决问题的能力。 +1. 为了更好的学习本课程,需要大家把Python编程能力培养好,通过做一定数量的练习题、小项目培养Python编程思维,这样后续的机器学习理论与实践才能学的比较扎实。 +2. 每个课程前半部分是理论基础,后半部分是代码实现。如果想学的更扎实,可以自己把各个方法的代码亲自实现一下。做的过程尽可能自己想解决办法,因为最重要的目标不是代码本身,而是学会分析问题、解决问题的能力。 +3. **不能直接抄已有的程序,或者抄别人的程序**,如果自己不会要自己去想,去找解决方法,或者去问。如果直接抄别人的代码,这样的练习一点意义都没有。**如果感觉太难,可以做的慢一些,但是坚持自己思考、自己编写练习代码**。。 +4. **请先遍历一遍所有的文件夹,了解有什么内容,资料**。各个目录里有很多说明文档,如果不会先找找有没有文档,如果找不到合适的文档就去网上找找。通过这个过程锻炼自己搜索文献、资料的能力。 +5. 本课程的练习题最好使用[Linux](https://gitee.com/pi-lab/learn_programming/blob/master/6_tools/linux)以及Linux下的工具来做。逼迫自己使用[Linux](https://gitee.com/pi-lab/learn_programming/blob/master/6_tools/linux),只有多练、多用才能快速进步。如果实在太难,先在虚拟机里装一个Linux(例如Ubuntu,或者LinuxMint等),先熟悉一下。但是最终需要学会使用Linux。 -## 3. 其他参考资料 + +## 3. 参考资料 * 资料速查 * [相关学习参考资料汇总](References.md) * [一些速查手册](tips/cheatsheet) @@ -98,13 +102,12 @@ * [Markdown——入门指南](https://www.jianshu.com/p/1e402922ee32) -## 4. 相关学习资料参考 + +## 4. 相关学习资料与参考 在上述内容学习完成之后,可以进行更进一步机器学习、计算机视觉方面的学习与研究,具体的资料可以参考: -1. [《一步一步学编程》](https://gitee.com/pi-lab/learn_programming) -2. 智能系统实验室-培训教程与作业 +1. 编程是机器学习研究、实现过程非常重要的能力,编程能力弱则无法快速试错,导致研究进度缓慢;如果编程能力强,则可以快速试错,快速编写实验代码等。强烈建议大家在学习本课程之后或之中,好好把数据结构、算法等基本功锻炼一下。具体的教程可以参考[《一步一步学编程》](https://gitee.com/pi-lab/learn_programming) +2. 智能系统实验室-培训教程与作业:这个教程是实验室积累的机器学习与计算机视觉方面的教程集合,每个课程介绍基本的原理、编程实现、应用方法等资料,可以作为快速入门的学习材料。 - [《智能系统实验室-暑期培训教程》](https://gitee.com/pi-lab/SummerCamp) - [《智能系统实验室-暑期培训作业》](https://gitee.com/pi-lab/SummerCampHomework) -3. [《智能系统实验室研究课题》](https://gitee.com/pi-lab/pilab_research_fields) -4. [《编程代码参考、技巧集合》](https://gitee.com/pi-lab/code_cook) - - 可以在这个代码、技巧集合中找到某项功能的示例,从而加快自己代码的编写 +3. [《编程代码参考、技巧集合》](https://gitee.com/pi-lab/code_cook):可以在这个代码、技巧集合中找到某项功能的示例,从而加快自己代码的编写