| @@ -0,0 +1,238 @@ | |||
| import torch | |||
| import numpy as np | |||
| from torch import nn | |||
| from torch.autograd import Variable | |||
| import torch.nn.functional as F | |||
| import matplotlib.pyplot as plt | |||
| #%matplotlib inline | |||
| np.random.seed(1) | |||
| m = 400 # 样本数量 | |||
| N = int(m/2) # 每一类的点的个数 | |||
| D = 2 # 维度 | |||
| x = np.zeros((m, D)) | |||
| y = np.zeros((m, 1), dtype='uint8') # label 向量, 0 表示红色, 1 表示蓝色 | |||
| a = 4 | |||
| # 生成两类数据 | |||
| for j in range(2): | |||
| ix = range(N*j,N*(j+1)) | |||
| t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta | |||
| r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius | |||
| x[ix] = np.c_[r*np.sin(t), r*np.cos(t)] | |||
| y[ix] = j | |||
| plt.ylabel("x2") | |||
| plt.xlabel("x1") | |||
| # 绘出生成的数据 | |||
| for i in range(m): | |||
| if y[i] == 0: | |||
| plt.scatter(x[i, 0], x[i, 1], marker='8',c=0, s=40, cmap=plt.cm.Spectral) | |||
| else: | |||
| plt.scatter(x[i, 0], x[i, 1], marker='^',c=1, s=40) | |||
| plt.savefig('fig-res-8.2.pdf') | |||
| plt.show() | |||
| # #尝试用逻辑回归解决 | |||
| # x = torch.from_numpy(x).float() | |||
| # y = torch.from_numpy(y).float() | |||
| # w = nn.Parameter(torch.randn(2, 1)) | |||
| # b = nn.Parameter(torch.zeros(1)) | |||
| # # [w,b]是模型的参数; 1e-1是学习速率 | |||
| # optimizer = torch.optim.SGD([w, b], 1e-1) | |||
| # criterion = nn.BCEWithLogitsLoss() | |||
| # def logistic_regression(x): | |||
| # return torch.mm(x, w) + b | |||
| # for e in range(100): | |||
| # # 模型正向计算 | |||
| # out = logistic_regression(Variable(x)) | |||
| # # 计算误差 | |||
| # loss = criterion(out, Variable(y)) | |||
| # # 误差反传和参数更新 | |||
| # optimizer.zero_grad() | |||
| # loss.backward() | |||
| # optimizer.step() | |||
| # if (e + 1) % 20 == 0: | |||
| # print('epoch:{}, loss:{}'.format(e+1, loss.item())) | |||
| # def plot_decision_boundary(model, x, y): | |||
| # # Set min and max values and give it some padding | |||
| # x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 | |||
| # y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 | |||
| # h = 0.01 | |||
| # # Generate a grid of points with distance h between them | |||
| # xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min,y_max, h)) | |||
| # # Predict the function value for the whole grid .c_ 按行连接两个矩阵,左右相加。 | |||
| # Z = model(np.c_[xx.ravel(), yy.ravel()]) | |||
| # Z = Z.reshape(xx.shape) | |||
| # # Plot the contour and training examples | |||
| # plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) | |||
| # plt.ylabel("x2") | |||
| # plt.xlabel("x1") | |||
| # plt.scatter(x[:, 0], x[:, 1], c=y.reshape(-1), s=40, cmap=plt.cm.Spectral) | |||
| # def plot_logistic(x): | |||
| # x = Variable(torch.from_numpy(x).float()) | |||
| # out = F.sigmoid(logistic_regression(x)) | |||
| # out = (out > 0.5) * 1 | |||
| # return out.data.numpy() | |||
| # plot_decision_boundary(lambda x: plot_logistic(x), x.numpy(), y.numpy()) | |||
| # plt.title('logistic regression') | |||
| # plt.savefig('fig-res-8.3.pdf') | |||
| # # 定义两层神经网络的参数 | |||
| # w1 = nn.Parameter(torch.randn(2, 4) * 0.01) # 输入维度为2, 隐藏层神经元个数4 | |||
| # b1 = nn.Parameter(torch.zeros(4)) | |||
| # w2 = nn.Parameter(torch.randn(4, 1) * 0.01) # 隐层神经元为4, 输出单元为1 | |||
| # b2 = nn.Parameter(torch.zeros(1)) | |||
| # def mlp_network(x): | |||
| # x1 = torch.mm(x, w1) + b1 | |||
| # x1 = F.tanh(x1) # 使用 PyTorch 自带的 tanh 激活函数 | |||
| # x2 = torch.mm(x1, w2) + b2 | |||
| # return x2 | |||
| # # 定义优化器和损失函数 | |||
| # optimizer = torch.optim.SGD([w1, w2, b1, b2], 1.) | |||
| # criterion = nn.BCEWithLogitsLoss() | |||
| # for e in range(10000): | |||
| # # 正向计算 | |||
| # out = mlp_network(Variable(x)) | |||
| # # 计算误差 | |||
| # loss = criterion(out, Variable(y)) | |||
| # # 计算梯度并更新权重 | |||
| # optimizer.zero_grad() | |||
| # loss.backward() | |||
| # optimizer.step() | |||
| # if (e + 1) % 1000 == 0: | |||
| # print('epoch: {}, loss: {}'.format(e+1, loss.item())) | |||
| # def plot_network(x): | |||
| # x = Variable(torch.from_numpy(x).float()) | |||
| # x1 = torch.mm(x, w1) + b1 | |||
| # x1 = F.tanh(x1) | |||
| # x2 = torch.mm(x1, w2) + b2 | |||
| # out = F.sigmoid(x2) | |||
| # out = (out > 0.5) * 1 | |||
| # return out.data.numpy() | |||
| # plot_decision_boundary(lambda x: plot_network(x), x.numpy(), y.numpy()) | |||
| # plt.title('2 layer network') | |||
| # plt.savefig('fig-res-8.4.pdf') | |||
| # # Sequential | |||
| # seq_net = nn.Sequential( | |||
| # nn.Linear(2, 4), # PyTorch 中的线性层, wx + b | |||
| # nn.Tanh(), | |||
| # nn.Linear(4, 1) | |||
| # ) | |||
| # # 序列模块可以通过索引访问每一层 | |||
| # seq_net[0] # 第一层 | |||
| # # 打印出第一层的权重 | |||
| # w0 = seq_net[0].weight | |||
| # print(w0) | |||
| # # 通过 parameters 可以取得模型的参数 | |||
| # param = seq_net.parameters() | |||
| # # 定义优化器 | |||
| # optim = torch.optim.SGD(param, 1.) | |||
| # # 训练 10000 次 | |||
| # for e in range(10000): | |||
| # # 网络正向计算 | |||
| # out = seq_net(Variable(x)) | |||
| # # 计算误差 | |||
| # loss = criterion(out, Variable(y)) | |||
| # # 反向传播、 更新权重 | |||
| # optim.zero_grad() | |||
| # loss.backward() | |||
| # optim.step() | |||
| # # 打印损失 | |||
| # if (e + 1) % 1000 == 0: | |||
| # print('epoch: {}, loss: {}'.format(e+1, loss.item())) | |||
| # def plot_seq(x): | |||
| # out = F.sigmoid(seq_net(Variable(torch.from_numpy(x).float()))).data.numpy() | |||
| # out = (out > 0.5) * 1 | |||
| # return out | |||
| # plot_decision_boundary(lambda x: plot_seq(x), x.numpy(), y.numpy()) | |||
| # plt.title('sequential') | |||
| # plt.savefig('fig-res-8.5.pdf') | |||
| # torch.save(seq_net, 'save_seq_net.pth') | |||
| # # 读取保存的模型 | |||
| # seq_net1 = torch.load('save_seq_net.pth') | |||
| # # 打印加载的模型 | |||
| # seq_net1 | |||
| # print(seq_net1[0].weight) | |||
| # # 保存模型参数 | |||
| # torch.save(seq_net.state_dict(), 'save_seq_net_params.pth') | |||
| # # 定义网络架构 | |||
| # seq_net2 = nn.Sequential( | |||
| # nn.Linear(2, 4), | |||
| # nn.Tanh(), | |||
| # nn.Linear(4, 1) | |||
| # ) | |||
| # # 加载网络参数 | |||
| # seq_net2.load_state_dict(torch.load('save_seq_net_params.pth')) | |||
| # # 打印网络结构 | |||
| # seq_net2 | |||
| # print(seq_net2[0].weight) | |||
| # class Module_Net(nn.Module): | |||
| # def __init__(self, num_input, num_hidden, num_output): | |||
| # super(Module_Net, self).__init__() | |||
| # self.layer1 = nn.Linear(num_input, num_hidden) | |||
| # self.layer2 = nn.Tanh() | |||
| # self.layer3 = nn.Linear(num_hidden, num_output) | |||
| # def forward(self, x): | |||
| # x = self.layer1(x) | |||
| # x = self.layer2(x) | |||
| # x = self.layer3(x) | |||
| # return x | |||
| # mo_net = Module_Net(2, 4, 1) | |||
| # # 访问模型中的某层可以直接通过名字, 网络第一层 | |||
| # l1 = mo_net.layer1 | |||
| # print(l1) | |||
| # optim = torch.optim.SGD(mo_net.parameters(), 1.) | |||
| # # 训练 10000 次 | |||
| # for e in range(10000): | |||
| # # 网络正向计算 | |||
| # out = mo_net(Variable(x)) | |||
| # # 计算误差 | |||
| # loss = criterion(out, Variable(y)) | |||
| # # 误差反传、 更新参数 | |||
| # optim.zero_grad() | |||
| # loss.backward() | |||
| # optim.step() | |||
| # # 打印损失 | |||
| # if (e + 1) % 1000 == 0: | |||
| # print('epoch: {}, loss: {}'.format(e+1, loss.item())) | |||
| # torch.save(mo_net.state_dict(), 'module_net.pth') | |||
| @@ -0,0 +1,86 @@ | |||
| import torch | |||
| import numpy as np | |||
| from torch import nn | |||
| from torch.autograd import Variable | |||
| import torch.nn.functional as F | |||
| import matplotlib.pyplot as plt | |||
| plt.rcParams['font.sans-serif']=['SimHei'] | |||
| plt.rcParams['axes.unicode_minus'] = False | |||
| #%matplotlib inline | |||
| np.random.seed(1) | |||
| m = 400 # 样本数量 | |||
| N = int(m/2) # 每一类的点的个数 | |||
| D = 2 # 维度 | |||
| x = np.zeros((m, D)) | |||
| y = np.zeros((m, 1), dtype='uint8') # label 向量, 0 表示红色, 1 表示蓝色 | |||
| a = 4 | |||
| # 生成两类数据 | |||
| for j in range(2): | |||
| ix = range(N*j,N*(j+1)) | |||
| t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta | |||
| r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius | |||
| x[ix] = np.c_[r*np.sin(t), r*np.cos(t)] | |||
| y[ix] = j | |||
| #尝试用逻辑回归解决 | |||
| x = torch.from_numpy(x).float() | |||
| y = torch.from_numpy(y).float() | |||
| w = nn.Parameter(torch.randn(2, 1)) | |||
| b = nn.Parameter(torch.zeros(1)) | |||
| # [w,b]是模型的参数; 1e-1是学习速率 | |||
| optimizer = torch.optim.SGD([w, b], 1e-1) | |||
| criterion = nn.BCEWithLogitsLoss() | |||
| def logistic_regression(x): | |||
| return torch.mm(x, w) + b | |||
| for e in range(100): | |||
| # 模型正向计算 | |||
| out = logistic_regression(Variable(x)) | |||
| # 计算误差 | |||
| loss = criterion(out, Variable(y)) | |||
| # 误差反传和参数更新 | |||
| optimizer.zero_grad() | |||
| loss.backward() | |||
| optimizer.step() | |||
| if (e + 1) % 20 == 0: | |||
| print('epoch:{}, loss:{}'.format(e+1, loss.item())) | |||
| def plot_decision_boundary(model, x, y): | |||
| # Set min and max values and give it some padding | |||
| x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 | |||
| y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 | |||
| h = 0.01 | |||
| # Generate a grid of points with distance h between them | |||
| xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min,y_max, h)) | |||
| # Predict the function value for the whole grid .c_ 按行连接两个矩阵,左右相加。 | |||
| Z = model(np.c_[xx.ravel(), yy.ravel()]) | |||
| Z = Z.reshape(xx.shape) | |||
| # Plot the contour and training examples | |||
| plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) | |||
| plt.ylabel("x2") | |||
| plt.xlabel("x1") | |||
| for i in range(m): | |||
| if y[i] == 0: | |||
| plt.scatter(x[i, 0], x[i, 1], marker='8',c=0, s=40, cmap=plt.cm.Spectral) | |||
| else: | |||
| plt.scatter(x[i, 0], x[i, 1], marker='^',c=1, s=40) | |||
| def plot_logistic(x): | |||
| x = Variable(torch.from_numpy(x).float()) | |||
| out = F.sigmoid(logistic_regression(x)) | |||
| out = (out > 0.5) * 1 | |||
| return out.data.numpy() | |||
| plot_decision_boundary(lambda x: plot_logistic(x), x.numpy(), y.numpy()) | |||
| plt.title('逻辑回归') | |||
| plt.savefig('fig-res-8.3.pdf') | |||
| plt.show() | |||
| @@ -0,0 +1,91 @@ | |||
| import torch | |||
| import numpy as np | |||
| from torch import nn | |||
| from torch.autograd import Variable | |||
| import torch.nn.functional as F | |||
| import matplotlib.pyplot as plt | |||
| plt.rcParams['font.sans-serif']=['SimHei'] | |||
| plt.rcParams['axes.unicode_minus'] = False | |||
| #%matplotlib inline | |||
| np.random.seed(1) | |||
| m = 400 # 样本数量 | |||
| N = int(m/2) # 每一类的点的个数 | |||
| D = 2 # 维度 | |||
| x = np.zeros((m, D)) | |||
| y = np.zeros((m, 1), dtype='uint8') # label 向量, 0 表示红色, 1 表示蓝色 | |||
| a = 4 | |||
| # 生成两类数据 | |||
| for j in range(2): | |||
| ix = range(N*j,N*(j+1)) | |||
| t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta | |||
| r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius | |||
| x[ix] = np.c_[r*np.sin(t), r*np.cos(t)] | |||
| y[ix] = j | |||
| x = torch.from_numpy(x).float() | |||
| y = torch.from_numpy(y).float() | |||
| # 定义两层神经网络的参数 | |||
| w1 = nn.Parameter(torch.randn(2, 4) * 0.01) # 输入维度为2, 隐藏层神经元个数4 | |||
| b1 = nn.Parameter(torch.zeros(4)) | |||
| w2 = nn.Parameter(torch.randn(4, 1) * 0.01) # 隐层神经元为4, 输出单元为1 | |||
| b2 = nn.Parameter(torch.zeros(1)) | |||
| def mlp_network(x): | |||
| x1 = torch.mm(x, w1) + b1 | |||
| x1 = F.tanh(x1) # 使用 PyTorch 自带的 tanh 激活函数 | |||
| x2 = torch.mm(x1, w2) + b2 | |||
| return x2 | |||
| # 定义优化器和损失函数 | |||
| optimizer = torch.optim.SGD([w1, w2, b1, b2], 1.) | |||
| criterion = nn.BCEWithLogitsLoss() | |||
| for e in range(10000): | |||
| # 正向计算 | |||
| out = mlp_network(Variable(x)) | |||
| # 计算误差 | |||
| loss = criterion(out, Variable(y)) | |||
| # 计算梯度并更新权重 | |||
| optimizer.zero_grad() | |||
| loss.backward() | |||
| optimizer.step() | |||
| if (e + 1) % 1000 == 0: | |||
| print('epoch: {}, loss: {}'.format(e+1, loss.item())) | |||
| def plot_decision_boundary(model, x, y): | |||
| # Set min and max values and give it some padding | |||
| x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 | |||
| y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 | |||
| h = 0.01 | |||
| # Generate a grid of points with distance h between them | |||
| xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min,y_max, h)) | |||
| # Predict the function value for the whole grid .c_ 按行连接两个矩阵,左右相加。 | |||
| Z = model(np.c_[xx.ravel(), yy.ravel()]) | |||
| Z = Z.reshape(xx.shape) | |||
| # Plot the contour and training examples | |||
| plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) | |||
| plt.ylabel("x2") | |||
| plt.xlabel("x1") | |||
| for i in range(m): | |||
| if y[i] == 0: | |||
| plt.scatter(x[i, 0], x[i, 1], marker='8',c=0, s=40, cmap=plt.cm.Spectral) | |||
| else: | |||
| plt.scatter(x[i, 0], x[i, 1], marker='^',c=1, s=40) | |||
| def plot_network(x): | |||
| x = Variable(torch.from_numpy(x).float()) | |||
| x1 = torch.mm(x, w1) + b1 | |||
| x1 = F.tanh(x1) | |||
| x2 = torch.mm(x1, w2) + b2 | |||
| out = F.sigmoid(x2) | |||
| out = (out > 0.5) * 1 | |||
| return out.data.numpy() | |||
| plot_decision_boundary(lambda x: plot_network(x), x.numpy(), y.numpy()) | |||
| plt.title('2层神经网络') | |||
| plt.savefig('fig-res-8.4.pdf') | |||
| plt.show() | |||
| @@ -0,0 +1,107 @@ | |||
| import torch | |||
| import numpy as np | |||
| from torch import nn | |||
| from torch.autograd import Variable | |||
| import torch.nn.functional as F | |||
| import matplotlib.pyplot as plt | |||
| import matplotlib as mpl | |||
| plt.rcParams['font.sans-serif']=['SimHei'] | |||
| plt.rcParams['axes.unicode_minus'] = False | |||
| #%matplotlib inline | |||
| np.random.seed(1) | |||
| m = 400 # 样本数量 | |||
| N = int(m/2) # 每一类的点的个数 | |||
| D = 2 # 维度 | |||
| x = np.zeros((m, D)) | |||
| y = np.zeros((m, 1), dtype='uint8') # label 向量, 0 表示红色, 1 表示蓝色 | |||
| a = 4 | |||
| criterion = nn.BCEWithLogitsLoss() | |||
| # 生成两类数据 | |||
| for j in range(2): | |||
| ix = range(N*j,N*(j+1)) | |||
| t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta | |||
| r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius | |||
| x[ix] = np.c_[r*np.sin(t), r*np.cos(t)] | |||
| y[ix] = j | |||
| def plot_decision_boundary(model, x, y): | |||
| # Set min and max values and give it some padding | |||
| x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 | |||
| y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 | |||
| h = 0.01 | |||
| # Generate a grid of points with distance h between them | |||
| xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min,y_max, h)) | |||
| # Predict the function value for the whole grid .c_ 按行连接两个矩阵,左右相加。 | |||
| Z = model(np.c_[xx.ravel(), yy.ravel()]) | |||
| Z = Z.reshape(xx.shape) | |||
| # Plot the contour and training examples | |||
| plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) | |||
| plt.ylabel("x2") | |||
| plt.xlabel("x1") | |||
| for i in range(m): | |||
| if y[i] == 0: | |||
| plt.scatter(x[i, 0], x[i, 1], marker='8',c=0, s=40, cmap=plt.cm.Spectral) | |||
| else: | |||
| plt.scatter(x[i, 0], x[i, 1], marker='^',c=1, s=40) | |||
| #尝试用逻辑回归解决 | |||
| x = torch.from_numpy(x).float() | |||
| y = torch.from_numpy(y).float() | |||
| # Sequential | |||
| seq_net = nn.Sequential( | |||
| nn.Linear(2, 4), # PyTorch 中的线性层, wx + b | |||
| nn.Tanh(), | |||
| nn.Linear(4, 1) | |||
| ) | |||
| # 序列模块可以通过索引访问每一层 | |||
| seq_net[0] # 第一层 | |||
| # 打印出第一层的权重 | |||
| w0 = seq_net[0].weight | |||
| print(w0) | |||
| # 通过 parameters 可以取得模型的参数 | |||
| param = seq_net.parameters() | |||
| # 定义优化器 | |||
| optim = torch.optim.SGD(param, 1.) | |||
| # 训练 10000 次 | |||
| for e in range(10000): | |||
| # 网络正向计算 | |||
| out = seq_net(Variable(x)) | |||
| # 计算误差 | |||
| loss = criterion(out, Variable(y)) | |||
| # 反向传播、 更新权重 | |||
| optim.zero_grad() | |||
| loss.backward() | |||
| optim.step() | |||
| # 打印损失 | |||
| if (e + 1) % 1000 == 0: | |||
| print('epoch: {}, loss: {}'.format(e+1, loss.item())) | |||
| def plot_seq(x): | |||
| out = F.sigmoid(seq_net(Variable(torch.from_numpy(x).float()))).data.numpy() | |||
| out = (out > 0.5) * 1 | |||
| return out | |||
| plot_decision_boundary(lambda x: plot_seq(x), x.numpy(), y.numpy()) | |||
| mpl.rcParams['font.family'] = 'SimHei' | |||
| plt.rcParams['axes.unicode_minus'] = False | |||
| # plt.title('序列化网络') | |||
| # plt.savefig('fig-res-8.5.pdf') | |||
| plt.title('模块定义网络') | |||
| plt.savefig('fig-res-8.6.pdf') | |||
| plt.show() | |||
| torch.save(seq_net, 'save_seq_net.pth') | |||
| @@ -0,0 +1,116 @@ | |||
| import torch | |||
| import numpy as np | |||
| from torch import nn | |||
| from torch.autograd import Variable | |||
| import torch.nn.functional as F | |||
| import matplotlib.pyplot as plt | |||
| #%matplotlib inline | |||
| np.random.seed(1) | |||
| m = 400 # 样本数量 | |||
| N = int(m/2) # 每一类的点的个数 | |||
| D = 2 # 维度 | |||
| x = np.zeros((m, D)) | |||
| y = np.zeros((m, 1), dtype='uint8') # label 向量, 0 表示红色, 1 表示蓝色 | |||
| a = 4 | |||
| criterion = nn.BCEWithLogitsLoss() | |||
| # 生成两类数据 | |||
| for j in range(2): | |||
| ix = range(N*j,N*(j+1)) | |||
| t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta | |||
| r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius | |||
| x[ix] = np.c_[r*np.sin(t), r*np.cos(t)] | |||
| y[ix] = j | |||
| def plot_decision_boundary(model, x, y): | |||
| # Set min and max values and give it some padding | |||
| x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 | |||
| y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 | |||
| h = 0.01 | |||
| # Generate a grid of points with distance h between them | |||
| xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min,y_max, h)) | |||
| # Predict the function value for the whole grid .c_ 按行连接两个矩阵,左右相加。 | |||
| Z = model(np.c_[xx.ravel(), yy.ravel()]) | |||
| Z = Z.reshape(xx.shape) | |||
| # Plot the contour and training examples | |||
| plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) | |||
| plt.ylabel("x2") | |||
| plt.xlabel("x1") | |||
| for i in range(m): | |||
| if y[i] == 0: | |||
| plt.scatter(x[i, 0], x[i, 1], marker='8',c=0, s=40, cmap=plt.cm.Spectral) | |||
| else: | |||
| plt.scatter(x[i, 0], x[i, 1], marker='^',c=1, s=40) | |||
| #尝试用逻辑回归解决 | |||
| x = torch.from_numpy(x).float() | |||
| y = torch.from_numpy(y).float() | |||
| seq_net = nn.Sequential( | |||
| nn.Linear(2, 4), # PyTorch 中的线性层, wx + b | |||
| nn.Tanh(), | |||
| nn.Linear(4, 1) | |||
| ) | |||
| # 读取保存的模型 | |||
| seq_net1 = torch.load('save_seq_net.pth') | |||
| # 打印加载的模型 | |||
| seq_net1 | |||
| print(seq_net1[0].weight) | |||
| # 保存模型参数 | |||
| torch.save(seq_net.state_dict(), 'save_seq_net_params.pth') | |||
| # 定义网络架构 | |||
| seq_net2 = nn.Sequential( | |||
| nn.Linear(2, 4), | |||
| nn.Tanh(), | |||
| nn.Linear(4, 1) | |||
| ) | |||
| # 加载网络参数 | |||
| seq_net2.load_state_dict(torch.load('save_seq_net_params.pth')) | |||
| # 打印网络结构 | |||
| seq_net2 | |||
| print(seq_net2[0].weight) | |||
| class Module_Net(nn.Module): | |||
| def __init__(self, num_input, num_hidden, num_output): | |||
| super(Module_Net, self).__init__() | |||
| self.layer1 = nn.Linear(num_input, num_hidden) | |||
| self.layer2 = nn.Tanh() | |||
| self.layer3 = nn.Linear(num_hidden, num_output) | |||
| def forward(self, x): | |||
| x = self.layer1(x) | |||
| x = self.layer2(x) | |||
| x = self.layer3(x) | |||
| return x | |||
| mo_net = Module_Net(2, 4, 1) | |||
| # 访问模型中的某层可以直接通过名字, 网络第一层 | |||
| l1 = mo_net.layer1 | |||
| print(l1) | |||
| optim = torch.optim.SGD(mo_net.parameters(), 1.) | |||
| # 训练 10000 次 | |||
| for e in range(10000): | |||
| # 网络正向计算 | |||
| out = mo_net(Variable(x)) | |||
| # 计算误差 | |||
| loss = criterion(out, Variable(y)) | |||
| # 误差反传、 更新参数 | |||
| optim.zero_grad() | |||
| loss.backward() | |||
| optim.step() | |||
| # 打印损失 | |||
| if (e + 1) % 1000 == 0: | |||
| print('epoch: {}, loss: {}'.format(e+1, loss.item())) | |||
| torch.save(mo_net.state_dict(), 'module_net.pth') | |||