| @@ -0,0 +1,63 @@ | |||||
| # Installing Python environments | |||||
| 这章,讲解如何安装Python的环境 | |||||
| ## 1. Windows | |||||
| ### 安装Anaconda | |||||
| 由于Anaconda集成了大部分的python包,因此能够很方便的开始使用。由于网络下载速度较慢,因此推荐使用镜像来提高下载的速度。 | |||||
| 在这里找到适合自己的安装文件,然后下载 | |||||
| https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/ | |||||
| 设置软件源 https://mirror.tuna.tsinghua.edu.cn/help/anaconda/ | |||||
| ``` | |||||
| conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ | |||||
| conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ | |||||
| conda config --set show_channel_urls yes | |||||
| ``` | |||||
| ### 安装Pytorch | |||||
| ``` | |||||
| conda install pytorch -c pytorch | |||||
| pip3 install torchvision | |||||
| ``` | |||||
| ## 2. Linux | |||||
| ### 安装pip | |||||
| ``` | |||||
| sudo apt-get install python3-pip | |||||
| ``` | |||||
| ### 设置PIP源 | |||||
| ``` | |||||
| pip config set global.index-url 'https://mirrors.ustc.edu.cn/pypi/web/simple' | |||||
| ``` | |||||
| ### 安装常用的包 | |||||
| ``` | |||||
| pip install -r requirements.txt | |||||
| ``` | |||||
| 或者手动安装 | |||||
| ``` | |||||
| sudo pip install scipy | |||||
| sudo pip install scikit-learn | |||||
| sudo pip install numpy | |||||
| sudo pip install matplotlib | |||||
| sudo pip install pandas | |||||
| sudo pip install ipython | |||||
| sudo pip install jupyter | |||||
| ``` | |||||
| ### 安装pytorch | |||||
| 到[pytorch 官网](https://pytorch.org),根据自己的操作系统、CUDA版本,选择合适的安装命令。 | |||||
| 例如Linux, Python3.5, CUDA 9.0: | |||||
| ``` | |||||
| pip3 install torch torchvision | |||||
| ``` | |||||
| @@ -1,31 +1,8 @@ | |||||
| # Python和机器学习的notebook | # Python和机器学习的notebook | ||||
| 本notebook教程包含了一些使用Python来学习机器学习的教程。通过本教程能够引导学习Python的基础知识和机器学习的背景和实际编程。 | |||||
| 本notebook教程包含了一些使用Python来学习机器学习的教程,通过本教程能够引导学习Python的基础知识和机器学习的背景和实际编程。 | |||||
| ## References | |||||
| 更多的学习资料,可以自行在下属列表找找到适合自己的学习资料。 | |||||
| ### Python & IPython | |||||
| * [Python教程](https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000) | |||||
| * [Python-Lectures](https://github.com/rajathkmp/Python-Lectures) | |||||
| * [A gallery of interesting Jupyter Notebooks](https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks) | |||||
| * [IPython tutorials](https://nbviewer.jupyter.org/github/ipython/ipython/blob/master/examples/IPython%20Kernel/Index.ipynb) | |||||
| * [Examples from the IPython mini-book](https://github.com/rossant/ipython-minibook) | |||||
| * [Code of the IPython Cookbook, Second Edition (2018)](https://github.com/ipython-books/cookbook-2nd-code) | |||||
| * [scientific-python-lectures](http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/tree/master/) | |||||
| ### Libs | |||||
| * [numpy](http://www.numpy.org/) | |||||
| * [matplotlib - 2D and 3D plotting in Python](http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-4-Matplotlib.ipynb) | |||||
| * [scipy](https://www.scipy.org/) | |||||
| * [pytorch](https://pytorch.org/) | |||||
| * [tensorflow](https://www.tensorflow.org/) | |||||
| ### Machine learning | |||||
| * [ipython-notebooks: A collection of IPython notebooks covering various topics](https://github.com/jdwittenauer/ipython-notebooks) | |||||
| * [Learn Data Science](http://learnds.com/) | |||||
| * [AM207 2016](https://github.com/AM207/2016/tree/master) | |||||
| 内容 | |||||
| * [安装Python环境](InstallPython.md) | |||||
| * [参考资料等](References.md) | |||||
| @@ -0,0 +1,52 @@ | |||||
| # References | |||||
| 更多的学习资料,可以自行在下属列表找找到适合自己的学习资料。 | |||||
| ## Python & IPython | |||||
| * [Python教程](https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000) | |||||
| * [Python-Lectures](https://github.com/rajathkmp/Python-Lectures) | |||||
| * [A gallery of interesting Jupyter Notebooks](https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks) | |||||
| * [IPython tutorials](https://nbviewer.jupyter.org/github/ipython/ipython/blob/master/examples/IPython%20Kernel/Index.ipynb) | |||||
| * [Examples from the IPython mini-book](https://github.com/rossant/ipython-minibook) | |||||
| * [Code of the IPython Cookbook, Second Edition (2018)](https://github.com/ipython-books/cookbook-2nd-code) | |||||
| * [scientific-python-lectures](http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/tree/master/) | |||||
| ## Libs | |||||
| * [numpy](http://www.numpy.org/) | |||||
| * [matplotlib - 2D and 3D plotting in Python](http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-4-Matplotlib.ipynb) | |||||
| * [scipy](https://www.scipy.org/) | |||||
| * [pytorch](https://pytorch.org/) | |||||
| * [tensorflow](https://www.tensorflow.org/) | |||||
| ## Machine learning | |||||
| * [ipython-notebooks: A collection of IPython notebooks covering various topics](https://github.com/jdwittenauer/ipython-notebooks) | |||||
| * [Learn Data Science](http://learnds.com/) | |||||
| * [AM207 2016](https://github.com/AM207/2016/tree/master) | |||||
| ## Awesome series | |||||
| * [Awesome Cmputer Vision](https://github.com/jbhuang0604/awesome-computer-vision) | |||||
| * [Awesome Deep Learning](https://github.com/ChristosChristofidis/awesome-deep-learning) | |||||
| * [Awesome - Most Cited Deep Learning Papers](https://github.com/terryum/awesome-deep-learning-papers) | |||||
| * [Awesome Deep Vision](https://github.com/kjw0612/awesome-deep-vision) | |||||
| * [Awesome 3D Reconstruction](https://github.com/openMVG/awesome_3DReconstruction_list) | |||||
| ## Lectures | |||||
| * [Machine Learning](https://www.coursera.org/learn/machine-learning) | |||||
| * [CS229: Machine Learning](http://cs229.stanford.edu/) | |||||
| * [CS 20: Tensorflow for Deep Learning Research](http://web.stanford.edu/class/cs20si/index.html) | |||||
| * [CS 294: Deep Reinforcement Learning, UC Berkeley](http://rll.berkeley.edu/deeprlcourse/) | |||||
| * [Deep Learning Book](https://github.com/exacity/deeplearningbook-chinese) | |||||
| * [Machine Learning Crash Course with TensorFlow APIs](https://developers.google.cn/machine-learning/crash-course/) | |||||
| * [ Nvidia DLI](https://www.nvidia.com/zh-cn/deep-learning-ai/education/) | |||||
| * [Introduction to Machine Learning](https://webdocs.cs.ualberta.ca/~nray1/CMPUT466_551.htm) | |||||
| * [Computer Vision @ ETHZ](http://cvg.ethz.ch/teaching/compvis/) | |||||
| * [SFMedu: A Structure from Motion System for Education](http://robots.princeton.edu/courses/SFMedu/) | |||||
| * [Scene understanding of computer vision](http://vision.princeton.edu/courses/COS598/2014sp/) | |||||
| * [Autonomous Navigation for Flying Robots](http://vision.in.tum.de/teaching/ss2015/autonavx) | |||||
| * [Multiple View Geometry](http://vision.in.tum.de/teaching/ss2015/mvg2015) | |||||
| * [Deep Learning for Self-Driving Cars](https://selfdrivingcars.mit.edu/) | |||||
| * [史上最全TensorFlow学习资源汇总](https://www.toutiao.com/a6543679835670053380/) | |||||
| * [Oxford Deep NLP 2017 course](https://github.com/oxford-cs-deepnlp-2017/lectures) | |||||
| @@ -1,94 +0,0 @@ | |||||
| { | |||||
| "cells": [ | |||||
| { | |||||
| "cell_type": "markdown", | |||||
| "metadata": {}, | |||||
| "source": [ | |||||
| "# Chapter 2. Installing Python environments\n", | |||||
| "\n", | |||||
| "这章,讲解如何安装Python的环境" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "markdown", | |||||
| "metadata": {}, | |||||
| "source": [ | |||||
| "## Windows\n", | |||||
| "\n", | |||||
| "### 安装Anaconda\n", | |||||
| "\n", | |||||
| "由于Anaconda集成了大部分的python包,因此能够很方便的开始使用。由于网络下载速度较慢,因此推荐使用镜像来提高下载的速度。\n", | |||||
| "\n", | |||||
| "在这里找到适合自己的安装文件,然后下载\n", | |||||
| "https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/\n", | |||||
| "\n", | |||||
| "设置软件源 https://mirror.tuna.tsinghua.edu.cn/help/anaconda/\n", | |||||
| "```\n", | |||||
| "conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/\n", | |||||
| "conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/\n", | |||||
| "conda config --set show_channel_urls yes\n", | |||||
| "```\n", | |||||
| "\n", | |||||
| "### 安装Pytorch\n", | |||||
| "```\n", | |||||
| "conda install pytorch -c pytorch \n", | |||||
| "pip3 install torchvision\n", | |||||
| "```\n", | |||||
| "\n", | |||||
| "\n", | |||||
| "## Linux\n", | |||||
| "\n", | |||||
| "### 安装pip\n", | |||||
| "```\n", | |||||
| "sudo apt-get install python3-pip\n", | |||||
| "```\n", | |||||
| "\n", | |||||
| "### 设置PIP源\n", | |||||
| "```\n", | |||||
| "pip config set global.index-url 'https://mirrors.ustc.edu.cn/pypi/web/simple'\n", | |||||
| "```\n", | |||||
| "\n", | |||||
| "### 安装常用的包\n", | |||||
| "```\n", | |||||
| "sudo pip install scipy\n", | |||||
| "sudo pip install scikit-learn\n", | |||||
| "sudo pip install numpy\n", | |||||
| "sudo pip install matplotlib\n", | |||||
| "sudo pip install pandas\n", | |||||
| "sudo pip install ipython\n", | |||||
| "sudo pip install jupyter\n", | |||||
| "```\n", | |||||
| "\n", | |||||
| "### 安装pytorch\n", | |||||
| "到[pytorch 官网](https://pytorch.org),根据自己的操作系统、CUDA版本,选择合适的安装命令。\n", | |||||
| "\n", | |||||
| "例如Linux, Python3.5, CUDA 9.0:\n", | |||||
| "```\n", | |||||
| "pip3 install torch torchvision\n", | |||||
| "```\n", | |||||
| "\n" | |||||
| ] | |||||
| } | |||||
| ], | |||||
| "metadata": { | |||||
| "kernelspec": { | |||||
| "display_name": "Python 3", | |||||
| "language": "python", | |||||
| "name": "python3" | |||||
| }, | |||||
| "language_info": { | |||||
| "codemirror_mode": { | |||||
| "name": "ipython", | |||||
| "version": 3 | |||||
| }, | |||||
| "file_extension": ".py", | |||||
| "mimetype": "text/x-python", | |||||
| "name": "python", | |||||
| "nbconvert_exporter": "python", | |||||
| "pygments_lexer": "ipython3", | |||||
| "version": "3.5.2" | |||||
| } | |||||
| }, | |||||
| "nbformat": 4, | |||||
| "nbformat_minor": 2 | |||||
| } | |||||