| @@ -10,12 +10,20 @@ def calcY(p3y, A, B, L): | |||||
| b = (A * A) + (B * B) | b = (A * A) + (B * B) | ||||
| return int((a / math.sqrt(b)) + p3y) | return int((a / math.sqrt(b)) + p3y) | ||||
| def calcCollinearX(line, p3y): | |||||
| p1x, p1y, p2x, p2y = line | |||||
| return int(((p3y - p2y) * p1x + (p1y - p3y) * p2x) / (p1y - p2y)) | |||||
| def calcCollinearY(line, p3x): | |||||
| p1x, p1y, p2x, p2y = line | |||||
| return int(((p3x - p1x) * p2y + (p2x - p3x) * p1y) / (p2x - p1x)) | |||||
| img = np.zeros((600, 600, 3), dtype = int) | img = np.zeros((600, 600, 3), dtype = int) | ||||
| img = np.array(img,dtype='uint8') | img = np.array(img,dtype='uint8') | ||||
| point1 = (100,230) | |||||
| point2 = (520,320) | |||||
| point3 = (500,200) | |||||
| point1 = (100,100) | |||||
| point2 = (500,500) | |||||
| point3 = (360,320) | |||||
| cv2.line(img, point1, point2, (0,0,255), 1) | cv2.line(img, point1, point2, (0,0,255), 1) | ||||
| cv2.circle(img, point3, 3, (0,255,0), -1) | cv2.circle(img, point3, 3, (0,255,0), -1) | ||||
| @@ -27,10 +35,23 @@ p3x, p3y = point3 | |||||
| A = p1x - p2x | A = p1x - p2x | ||||
| B = p1y - p2y | B = p1y - p2y | ||||
| L = 100 | |||||
| y = calcY(p3y, A, B, 400) | |||||
| y = calcY(p3y, A, B, L) | |||||
| x = calcX(p3x, p3y, A, B, y) | x = calcX(p3x, p3y, A, B, y) | ||||
| cv2.line(img, point3, (x, y), (255, 0, 0), 1) | |||||
| point4 = (x, y) | |||||
| cv2.circle(img, point4, 3, (255,255,0), -1) | |||||
| cv2.line(img, point3, point4, (255, 0, 0), 1) | |||||
| n3_y = point3[1] | |||||
| n3_x = calcCollinearX((*point1, *point2), n3_y) | |||||
| n4_x = point4[0] | |||||
| n4_y = calcCollinearY((*point1, *point2), n4_x) | |||||
| cv2.circle(img, (n3_x, n3_y), 3, (0,255,0), -1) | |||||
| cv2.circle(img, (n4_x, n4_y), 3, (255,255,0), -1) | |||||
| cv2.imshow('img2', img) | cv2.imshow('img2', img) | ||||
| cv2.waitKey(0) | cv2.waitKey(0) | ||||