| @@ -0,0 +1,107 @@ | |||||
| #!/usr/bin/env python3 | |||||
| # -*- coding: utf-8 -*- | |||||
| """ | |||||
| Created on Wed Oct 20 11:48:02 2020 | |||||
| @author: ljia | |||||
| """ | |||||
| # This script tests the influence of the ratios between node costs and edge costs on the stability of the GED computation, where the base edit costs are [1, 1, 1, 1, 1, 1]. | |||||
| import os | |||||
| import multiprocessing | |||||
| import pickle | |||||
| import logging | |||||
| from gklearn.utils import Dataset | |||||
| from gklearn.ged.util import compute_geds | |||||
| def get_dataset(ds_name): | |||||
| # The node/edge labels that will not be used in the computation. | |||||
| if ds_name == 'MAO': | |||||
| irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} | |||||
| elif ds_name == 'Monoterpenoides': | |||||
| irrelevant_labels = {'edge_labels': ['valence']} | |||||
| elif ds_name == 'MUTAG': | |||||
| irrelevant_labels = {'edge_labels': ['label_0']} | |||||
| elif ds_name == 'AIDS_symb': | |||||
| irrelevant_labels = {'node_attrs': ['chem', 'charge', 'x', 'y'], 'edge_labels': ['valence']} | |||||
| # Initialize a Dataset. | |||||
| dataset = Dataset() | |||||
| # Load predefined dataset. | |||||
| dataset.load_predefined_dataset(ds_name) | |||||
| # Remove irrelevant labels. | |||||
| dataset.remove_labels(**irrelevant_labels) | |||||
| print('dataset size:', len(dataset.graphs)) | |||||
| return dataset | |||||
| def xp_compute_ged_matrix(ds_name, num_solutions, ratio, trial): | |||||
| save_dir = 'outputs/edit_costs.num_sols.ratios.IPFP/' | |||||
| if not os.path.exists(save_dir): | |||||
| os.makedirs(save_dir) | |||||
| save_file_suffix = '.' + ds_name + '.num_sols_' + str(num_solutions) + '.ratio_' + "{:.2f}".format(ratio) + '.trial_' + str(trial) | |||||
| """**1. Get dataset.**""" | |||||
| dataset = get_dataset(ds_name) | |||||
| """**2. Set parameters.**""" | |||||
| # Parameters for GED computation. | |||||
| ged_options = {'method': 'IPFP', # use IPFP huristic. | |||||
| 'initialization_method': 'RANDOM', # or 'NODE', etc. | |||||
| # when bigger than 1, then the method is considered mIPFP. | |||||
| 'initial_solutions': int(num_solutions * 4), | |||||
| 'edit_cost': 'CONSTANT', # use CONSTANT cost. | |||||
| # the distance between non-symbolic node/edge labels is computed by euclidean distance. | |||||
| 'attr_distance': 'euclidean', | |||||
| 'ratio_runs_from_initial_solutions': 0.25, | |||||
| # parallel threads. Do not work if mpg_options['parallel'] = False. | |||||
| 'threads': multiprocessing.cpu_count(), | |||||
| 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES' | |||||
| } | |||||
| edit_cost_constants = [i * ratio for i in [1, 1, 1]] + [1, 1, 1] | |||||
| # edit_cost_constants = [item * 0.01 for item in edit_cost_constants] | |||||
| # pickle.dump(edit_cost_constants, open(save_dir + "edit_costs" + save_file_suffix + ".pkl", "wb")) | |||||
| options = ged_options.copy() | |||||
| options['edit_cost_constants'] = edit_cost_constants | |||||
| options['node_labels'] = dataset.node_labels | |||||
| options['edge_labels'] = dataset.edge_labels | |||||
| options['node_attrs'] = dataset.node_attrs | |||||
| options['edge_attrs'] = dataset.edge_attrs | |||||
| parallel = True # if num_solutions == 1 else False | |||||
| """**5. Compute GED matrix.**""" | |||||
| ged_mat = 'error' | |||||
| try: | |||||
| ged_vec_init, ged_mat, n_edit_operations = compute_geds(dataset.graphs, options=options, parallel=parallel, verbose=True) | |||||
| except Exception as exp: | |||||
| print('An exception occured when running this experiment:') | |||||
| LOG_FILENAME = save_dir + 'error.txt' | |||||
| logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG) | |||||
| logging.exception('save_file_suffix') | |||||
| print(repr(exp)) | |||||
| """**6. Get results.**""" | |||||
| pickle.dump(ged_mat, open(save_dir + 'ged_matrix' + save_file_suffix + '.pkl', 'wb')) | |||||
| if __name__ == '__main__': | |||||
| for ds_name in ['MAO', 'Monoterpenoides', 'MUTAG', 'AIDS_symb']: | |||||
| print() | |||||
| print('Dataset:', ds_name) | |||||
| for num_solutions in [1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]: | |||||
| print() | |||||
| print('# of solutions:', num_solutions) | |||||
| for ratio in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]: | |||||
| print() | |||||
| print('Ratio:', ratio) | |||||
| for trial in range(1, 101): | |||||
| print() | |||||
| print('Trial:', trial) | |||||
| xp_compute_ged_matrix(ds_name, num_solutions, ratio, trial) | |||||