| @@ -0,0 +1,418 @@ | |||||
| #!/usr/bin/env python3 | |||||
| # -*- coding: utf-8 -*- | |||||
| """ | |||||
| Created on Tue May 12 12:52:15 2020 | |||||
| @author: ljia | |||||
| """ | |||||
| import numpy as np | |||||
| import csv | |||||
| import os | |||||
| import os.path | |||||
| from gklearn.utils import Dataset | |||||
| from sklearn.model_selection import ShuffleSplit | |||||
| from gklearn.preimage import MedianPreimageGenerator | |||||
| from gklearn.utils import normalize_gram_matrix, compute_distance_matrix | |||||
| from gklearn.preimage.utils import get_same_item_indices | |||||
| from gklearn.utils.knn import knn_classification | |||||
| from gklearn.preimage.utils import compute_k_dis | |||||
| def kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=True, load_gm='auto', dir_save='', irrelevant_labels=None, edge_required=False, cut_range=None): | |||||
| # 1. get dataset. | |||||
| print('1. getting dataset...') | |||||
| dataset_all = Dataset() | |||||
| dataset_all.load_predefined_dataset(ds_name) | |||||
| dataset_all.trim_dataset(edge_required=edge_required) | |||||
| if irrelevant_labels is not None: | |||||
| dataset_all.remove_labels(**irrelevant_labels) | |||||
| if cut_range is not None: | |||||
| dataset_all.cut_graphs(cut_range) | |||||
| if save_results: | |||||
| # create result files. | |||||
| print('creating output files...') | |||||
| fn_output_detail, fn_output_summary = __init_output_file_knn(ds_name, kernel_options['name'], mpg_options['fit_method'], dir_save) | |||||
| else: | |||||
| fn_output_detail, fn_output_summary = None, None | |||||
| # 2. compute/load Gram matrix a priori. | |||||
| print('2. computing/loading Gram matrix...') | |||||
| gram_matrix_unnorm, time_precompute_gm = __get_gram_matrix(load_gm, dir_save, ds_name, kernel_options, dataset_all) | |||||
| # 3. perform k-nn CV. | |||||
| print('3. performing k-nn CV...') | |||||
| if train_examples == 'k-graphs' or train_examples == 'expert' or train_examples == 'random': | |||||
| __kernel_knn_cv_median(dataset_all, ds_name, knn_options, mpg_options, kernel_options, mge_options, ged_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary) | |||||
| elif train_examples == 'best-dataset': | |||||
| __kernel_knn_cv_best_ds(dataset_all, ds_name, knn_options, kernel_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary) | |||||
| elif train_examples == 'trainset': | |||||
| __kernel_knn_cv_trainset(dataset_all, ds_name, knn_options, kernel_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary) | |||||
| print('\ncomplete.\n') | |||||
| def __kernel_knn_cv_median(dataset_all, ds_name, knn_options, mpg_options, kernel_options, mge_options, ged_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary): | |||||
| Gn = dataset_all.graphs | |||||
| y_all = dataset_all.targets | |||||
| n_neighbors, n_splits, test_size = knn_options['n_neighbors'], knn_options['n_splits'], knn_options['test_size'] | |||||
| # get shuffles. | |||||
| train_indices, test_indices, train_nums, y_app = __get_shuffles(y_all, n_splits, test_size) | |||||
| accuracies = [[], [], []] | |||||
| for trial in range(len(train_indices)): | |||||
| print('\ntrial =', trial) | |||||
| train_index = train_indices[trial] | |||||
| test_index = test_indices[trial] | |||||
| G_app = [Gn[i] for i in train_index] | |||||
| G_test = [Gn[i] for i in test_index] | |||||
| y_test = [y_all[i] for i in test_index] | |||||
| gm_unnorm_trial = gram_matrix_unnorm[train_index,:][:,train_index].copy() | |||||
| # compute pre-images for each class. | |||||
| medians = [[], [], []] | |||||
| train_nums_tmp = [0] + train_nums | |||||
| print('\ncomputing pre-image for each class...\n') | |||||
| for i_class in range(len(train_nums_tmp) - 1): | |||||
| print(i_class + 1, 'of', len(train_nums_tmp) - 1, 'classes:') | |||||
| i_start = int(np.sum(train_nums_tmp[0:i_class + 1])) | |||||
| i_end = i_start + train_nums_tmp[i_class + 1] | |||||
| median_set = G_app[i_start:i_end] | |||||
| dataset = dataset_all.copy() | |||||
| dataset.load_graphs([g.copy() for g in median_set], targets=None) | |||||
| mge_options['update_order'] = True | |||||
| mpg_options['gram_matrix_unnorm'] = gm_unnorm_trial[i_start:i_end,i_start:i_end].copy() | |||||
| mpg_options['runtime_precompute_gm'] = 0 | |||||
| set_median, gen_median_uo = __generate_median_preimages(dataset, mpg_options, kernel_options, ged_options, mge_options) | |||||
| mge_options['update_order'] = False | |||||
| mpg_options['gram_matrix_unnorm'] = gm_unnorm_trial[i_start:i_end,i_start:i_end].copy() | |||||
| mpg_options['runtime_precompute_gm'] = 0 | |||||
| _, gen_median = __generate_median_preimages(dataset, mpg_options, kernel_options, ged_options, mge_options) | |||||
| medians[0].append(set_median) | |||||
| medians[1].append(gen_median) | |||||
| medians[2].append(gen_median_uo) | |||||
| # for each set of medians. | |||||
| print('\nperforming k-nn...') | |||||
| for i_app, G_app in enumerate(medians): | |||||
| # compute dis_mat between medians. | |||||
| dataset = dataset_all.copy() | |||||
| dataset.load_graphs([g.copy() for g in G_app], targets=None) | |||||
| gm_app_unnorm, _ = __compute_gram_matrix_unnorm(dataset, kernel_options.copy()) | |||||
| # compute the entire Gram matrix. | |||||
| graph_kernel = __get_graph_kernel(dataset.copy(), kernel_options.copy()) | |||||
| kernels_to_medians = [] | |||||
| for g in G_app: | |||||
| kernels_to_median, _ = graph_kernel.compute(g, G_test, **kernel_options.copy()) | |||||
| kernels_to_medians.append(kernels_to_median) | |||||
| kernels_to_medians = np.array(kernels_to_medians) | |||||
| gm_all = np.concatenate((gm_app_unnorm, kernels_to_medians), axis=1) | |||||
| gm_all = np.concatenate((gm_all, np.concatenate((kernels_to_medians.T, gram_matrix_unnorm[test_index,:][:,test_index].copy()), axis=1)), axis=0) | |||||
| gm_all = normalize_gram_matrix(gm_all.copy()) | |||||
| dis_mat, _, _, _ = compute_distance_matrix(gm_all) | |||||
| N = len(G_app) | |||||
| d_app = dis_mat[range(N),:][:,range(N)].copy() | |||||
| d_test = np.zeros((N, len(test_index))) | |||||
| for i in range(N): | |||||
| for j in range(len(test_index)): | |||||
| d_test[i, j] = dis_mat[i, j] | |||||
| accuracies[i_app].append(knn_classification(d_app, d_test, y_app, y_test, n_neighbors, verbose=True, text=train_examples)) | |||||
| # write result detail. | |||||
| if save_results: | |||||
| f_detail = open(dir_save + fn_output_detail, 'a') | |||||
| print('writing results to files...') | |||||
| for i, median_type in enumerate(['set-median', 'gen median', 'gen median uo']): | |||||
| csv.writer(f_detail).writerow([ds_name, kernel_options['name'], | |||||
| train_examples + ': ' + median_type, trial, | |||||
| knn_options['n_neighbors'], | |||||
| len(gm_all), knn_options['test_size'], | |||||
| accuracies[i][-1][0], accuracies[i][-1][1]]) | |||||
| f_detail.close() | |||||
| results = {} | |||||
| results['ave_perf_train'] = [np.mean([i[0] for i in j], axis=0) for j in accuracies] | |||||
| results['std_perf_train'] = [np.std([i[0] for i in j], axis=0, ddof=1) for j in accuracies] | |||||
| results['ave_perf_test'] = [np.mean([i[1] for i in j], axis=0) for j in accuracies] | |||||
| results['std_perf_test'] = [np.std([i[1] for i in j], axis=0, ddof=1) for j in accuracies] | |||||
| # write result summary for each letter. | |||||
| if save_results: | |||||
| f_summary = open(dir_save + fn_output_summary, 'a') | |||||
| for i, median_type in enumerate(['set-median', 'gen median', 'gen median uo']): | |||||
| csv.writer(f_summary).writerow([ds_name, kernel_options['name'], | |||||
| train_examples + ': ' + median_type, | |||||
| knn_options['n_neighbors'], | |||||
| knn_options['test_size'], results['ave_perf_train'][i], | |||||
| results['ave_perf_test'][i], results['std_perf_train'][i], | |||||
| results['std_perf_test'][i], time_precompute_gm]) | |||||
| f_summary.close() | |||||
| def __kernel_knn_cv_best_ds(dataset_all, ds_name, knn_options, kernel_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary): | |||||
| Gn = dataset_all.graphs | |||||
| y_all = dataset_all.targets | |||||
| n_neighbors, n_splits, test_size = knn_options['n_neighbors'], knn_options['n_splits'], knn_options['test_size'] | |||||
| # get shuffles. | |||||
| train_indices, test_indices, train_nums, y_app = __get_shuffles(y_all, n_splits, test_size) | |||||
| accuracies = [] | |||||
| for trial in range(len(train_indices)): | |||||
| print('\ntrial =', trial) | |||||
| train_index = train_indices[trial] | |||||
| test_index = test_indices[trial] | |||||
| G_app = [Gn[i] for i in train_index] | |||||
| G_test = [Gn[i] for i in test_index] | |||||
| y_test = [y_all[i] for i in test_index] | |||||
| gm_unnorm_trial = gram_matrix_unnorm[train_index,:][:,train_index].copy() | |||||
| # get best graph from trainset according to distance in kernel space for each class. | |||||
| best_graphs = [] | |||||
| train_nums_tmp = [0] + train_nums | |||||
| print('\ngetting best graph from trainset for each class...') | |||||
| for i_class in range(len(train_nums_tmp) - 1): | |||||
| print(i_class + 1, 'of', len(train_nums_tmp) - 1, 'classes.') | |||||
| i_start = int(np.sum(train_nums_tmp[0:i_class + 1])) | |||||
| i_end = i_start + train_nums_tmp[i_class + 1] | |||||
| G_class = G_app[i_start:i_end] | |||||
| gm_unnorm_class = gm_unnorm_trial[i_start:i_end,i_start:i_end] | |||||
| gm_class = normalize_gram_matrix(gm_unnorm_class.copy()) | |||||
| k_dis_list = [] | |||||
| for idx in range(len(G_class)): | |||||
| k_dis_list.append(compute_k_dis(idx, range(0, len(G_class)), [1 / len(G_class)] * len(G_class), gm_class, withterm3=False)) | |||||
| idx_k_dis_min = np.argmin(k_dis_list) | |||||
| best_graphs.append(G_class[idx_k_dis_min].copy()) | |||||
| # perform k-nn. | |||||
| print('\nperforming k-nn...') | |||||
| # compute dis_mat between medians. | |||||
| dataset = dataset_all.copy() | |||||
| dataset.load_graphs([g.copy() for g in best_graphs], targets=None) | |||||
| gm_app_unnorm, _ = __compute_gram_matrix_unnorm(dataset, kernel_options.copy()) | |||||
| # compute the entire Gram matrix. | |||||
| graph_kernel = __get_graph_kernel(dataset.copy(), kernel_options.copy()) | |||||
| kernels_to_best_graphs = [] | |||||
| for g in best_graphs: | |||||
| kernels_to_best_graph, _ = graph_kernel.compute(g, G_test, **kernel_options.copy()) | |||||
| kernels_to_best_graphs.append(kernels_to_best_graph) | |||||
| kernels_to_best_graphs = np.array(kernels_to_best_graphs) | |||||
| gm_all = np.concatenate((gm_app_unnorm, kernels_to_best_graphs), axis=1) | |||||
| gm_all = np.concatenate((gm_all, np.concatenate((kernels_to_best_graphs.T, gram_matrix_unnorm[test_index,:][:,test_index].copy()), axis=1)), axis=0) | |||||
| gm_all = normalize_gram_matrix(gm_all.copy()) | |||||
| dis_mat, _, _, _ = compute_distance_matrix(gm_all) | |||||
| N = len(best_graphs) | |||||
| d_app = dis_mat[range(N),:][:,range(N)].copy() | |||||
| d_test = np.zeros((N, len(test_index))) | |||||
| for i in range(N): | |||||
| for j in range(len(test_index)): | |||||
| d_test[i, j] = dis_mat[i, j] | |||||
| accuracies.append(knn_classification(d_app, d_test, y_app, y_test, n_neighbors, verbose=True, text=train_examples)) | |||||
| # write result detail. | |||||
| if save_results: | |||||
| f_detail = open(dir_save + fn_output_detail, 'a') | |||||
| print('writing results to files...') | |||||
| csv.writer(f_detail).writerow([ds_name, kernel_options['name'], | |||||
| train_examples, trial, | |||||
| knn_options['n_neighbors'], | |||||
| len(gm_all), knn_options['test_size'], | |||||
| accuracies[-1][0], accuracies[-1][1]]) | |||||
| f_detail.close() | |||||
| results = {} | |||||
| results['ave_perf_train'] = np.mean([i[0] for i in accuracies], axis=0) | |||||
| results['std_perf_train'] = np.std([i[0] for i in accuracies], axis=0, ddof=1) | |||||
| results['ave_perf_test'] = np.mean([i[1] for i in accuracies], axis=0) | |||||
| results['std_perf_test'] = np.std([i[1] for i in accuracies], axis=0, ddof=1) | |||||
| # write result summary for each letter. | |||||
| if save_results: | |||||
| f_summary = open(dir_save + fn_output_summary, 'a') | |||||
| csv.writer(f_summary).writerow([ds_name, kernel_options['name'], | |||||
| train_examples, | |||||
| knn_options['n_neighbors'], | |||||
| knn_options['test_size'], results['ave_perf_train'], | |||||
| results['ave_perf_test'], results['std_perf_train'], | |||||
| results['std_perf_test'], time_precompute_gm]) | |||||
| f_summary.close() | |||||
| def __kernel_knn_cv_trainset(dataset_all, ds_name, knn_options, kernel_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary): | |||||
| y_all = dataset_all.targets | |||||
| n_neighbors, n_splits, test_size = knn_options['n_neighbors'], knn_options['n_splits'], knn_options['test_size'] | |||||
| # compute distance matrix. | |||||
| gram_matrix = normalize_gram_matrix(gram_matrix_unnorm.copy()) | |||||
| dis_mat, _, _, _ = compute_distance_matrix(gram_matrix) | |||||
| # get shuffles. | |||||
| train_indices, test_indices, _, _ = __get_shuffles(y_all, n_splits, test_size) | |||||
| accuracies = [] | |||||
| for trial in range(len(train_indices)): | |||||
| print('\ntrial =', trial) | |||||
| train_index = train_indices[trial] | |||||
| test_index = test_indices[trial] | |||||
| y_app = [y_all[i] for i in train_index] | |||||
| y_test = [y_all[i] for i in test_index] | |||||
| N = len(train_index) | |||||
| d_app = dis_mat[train_index,:][:,train_index].copy() | |||||
| d_test = np.zeros((N, len(test_index))) | |||||
| for i in range(N): | |||||
| for j in range(len(test_index)): | |||||
| d_test[i, j] = dis_mat[train_index[i], test_index[j]] | |||||
| accuracies.append(knn_classification(d_app, d_test, y_app, y_test, n_neighbors, verbose=True, text=train_examples)) | |||||
| # write result detail. | |||||
| if save_results: | |||||
| print('writing results to files...') | |||||
| f_detail = open(dir_save + fn_output_detail, 'a') | |||||
| csv.writer(f_detail).writerow([ds_name, kernel_options['name'], | |||||
| train_examples, trial, knn_options['n_neighbors'], | |||||
| len(gram_matrix), knn_options['test_size'], | |||||
| accuracies[-1][0], accuracies[-1][1]]) | |||||
| f_detail.close() | |||||
| results = {} | |||||
| results['ave_perf_train'] = np.mean([i[0] for i in accuracies], axis=0) | |||||
| results['std_perf_train'] = np.std([i[0] for i in accuracies], axis=0, ddof=1) | |||||
| results['ave_perf_test'] = np.mean([i[1] for i in accuracies], axis=0) | |||||
| results['std_perf_test'] = np.std([i[1] for i in accuracies], axis=0, ddof=1) | |||||
| # write result summary for each letter. | |||||
| if save_results: | |||||
| f_summary = open(dir_save + fn_output_summary, 'a') | |||||
| csv.writer(f_summary).writerow([ds_name, kernel_options['name'], | |||||
| train_examples, knn_options['n_neighbors'], | |||||
| knn_options['test_size'], results['ave_perf_train'], | |||||
| results['ave_perf_test'], results['std_perf_train'], | |||||
| results['std_perf_test'], time_precompute_gm]) | |||||
| f_summary.close() | |||||
| def __get_shuffles(y_all, n_splits, test_size): | |||||
| rs = ShuffleSplit(n_splits=n_splits, test_size=test_size, random_state=0) | |||||
| train_indices = [[] for _ in range(n_splits)] | |||||
| test_indices = [[] for _ in range(n_splits)] | |||||
| idx_targets = get_same_item_indices(y_all) | |||||
| train_nums = [] | |||||
| keys = [] | |||||
| for key, item in idx_targets.items(): | |||||
| i = 0 | |||||
| for train_i, test_i in rs.split(item): # @todo: careful when parallel. | |||||
| train_indices[i] += [item[idx] for idx in train_i] | |||||
| test_indices[i] += [item[idx] for idx in test_i] | |||||
| i += 1 | |||||
| train_nums.append(len(train_i)) | |||||
| keys.append(key) | |||||
| return train_indices, test_indices, train_nums, keys | |||||
| def __generate_median_preimages(dataset, mpg_options, kernel_options, ged_options, mge_options): | |||||
| mpg = MedianPreimageGenerator() | |||||
| mpg.dataset = dataset.copy() | |||||
| mpg.set_options(**mpg_options.copy()) | |||||
| mpg.kernel_options = kernel_options.copy() | |||||
| mpg.ged_options = ged_options.copy() | |||||
| mpg.mge_options = mge_options.copy() | |||||
| mpg.run() | |||||
| return mpg.set_median, mpg.gen_median | |||||
| def __get_gram_matrix(load_gm, dir_save, ds_name, kernel_options, dataset_all): | |||||
| if load_gm == 'auto': | |||||
| gm_fname = dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm.npz' | |||||
| gmfile_exist = os.path.isfile(os.path.abspath(gm_fname)) | |||||
| if gmfile_exist: | |||||
| gmfile = np.load(gm_fname, allow_pickle=True) # @todo: may not be safe. | |||||
| gram_matrix_unnorm = gmfile['gram_matrix_unnorm'] | |||||
| time_precompute_gm = float(gmfile['run_time']) | |||||
| else: | |||||
| gram_matrix_unnorm, time_precompute_gm = __compute_gram_matrix_unnorm(dataset_all, kernel_options) | |||||
| np.savez(dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm', gram_matrix_unnorm=gram_matrix_unnorm, run_time=time_precompute_gm) | |||||
| elif not load_gm: | |||||
| gram_matrix_unnorm, time_precompute_gm = __compute_gram_matrix_unnorm(dataset_all, kernel_options) | |||||
| np.savez(dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm', gram_matrix_unnorm=gram_matrix_unnorm, run_time=time_precompute_gm) | |||||
| else: | |||||
| gm_fname = dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm.npz' | |||||
| gmfile = np.load(gm_fname, allow_pickle=True) | |||||
| gram_matrix_unnorm = gmfile['gram_matrix_unnorm'] | |||||
| time_precompute_gm = float(gmfile['run_time']) | |||||
| return gram_matrix_unnorm, time_precompute_gm | |||||
| def __get_graph_kernel(dataset, kernel_options): | |||||
| from gklearn.utils.utils import get_graph_kernel_by_name | |||||
| graph_kernel = get_graph_kernel_by_name(kernel_options['name'], | |||||
| node_labels=dataset.node_labels, | |||||
| edge_labels=dataset.edge_labels, | |||||
| node_attrs=dataset.node_attrs, | |||||
| edge_attrs=dataset.edge_attrs, | |||||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||||
| kernel_options=kernel_options) | |||||
| return graph_kernel | |||||
| def __compute_gram_matrix_unnorm(dataset, kernel_options): | |||||
| from gklearn.utils.utils import get_graph_kernel_by_name | |||||
| graph_kernel = get_graph_kernel_by_name(kernel_options['name'], | |||||
| node_labels=dataset.node_labels, | |||||
| edge_labels=dataset.edge_labels, | |||||
| node_attrs=dataset.node_attrs, | |||||
| edge_attrs=dataset.edge_attrs, | |||||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||||
| kernel_options=kernel_options) | |||||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, **kernel_options) | |||||
| gram_matrix_unnorm = graph_kernel.gram_matrix_unnorm | |||||
| return gram_matrix_unnorm, run_time | |||||
| def __init_output_file_knn(ds_name, gkernel, fit_method, dir_output): | |||||
| if not os.path.exists(dir_output): | |||||
| os.makedirs(dir_output) | |||||
| fn_output_detail = 'results_detail_knn.' + ds_name + '.' + gkernel + '.csv' | |||||
| f_detail = open(dir_output + fn_output_detail, 'a') | |||||
| csv.writer(f_detail).writerow(['dataset', 'graph kernel', | |||||
| 'train examples', 'trial', 'num neighbors', 'num graphs', 'test size', | |||||
| 'perf train', 'perf test']) | |||||
| f_detail.close() | |||||
| fn_output_summary = 'results_summary_knn.' + ds_name + '.' + gkernel + '.csv' | |||||
| f_summary = open(dir_output + fn_output_summary, 'a') | |||||
| csv.writer(f_summary).writerow(['dataset', 'graph kernel', | |||||
| 'train examples', 'num neighbors', 'test size', | |||||
| 'ave perf train', 'ave perf test', | |||||
| 'std perf train', 'std perf test', 'time precompute gm']) | |||||
| f_summary.close() | |||||
| return fn_output_detail, fn_output_summary | |||||