| @@ -0,0 +1,159 @@ | |||||
| #!/usr/bin/env python3 | |||||
| # -*- coding: utf-8 -*- | |||||
| """ | |||||
| Created on Mon Mar 16 17:26:40 2020 | |||||
| @author: ljia | |||||
| """ | |||||
| def test_median_graph_estimator(): | |||||
| from gklearn.utils import load_dataset | |||||
| from gklearn.ged.median import MedianGraphEstimator, constant_node_costs | |||||
| from gklearn.gedlib import librariesImport, gedlibpy | |||||
| from gklearn.preimage.utils import get_same_item_indices | |||||
| import multiprocessing | |||||
| # estimator parameters. | |||||
| init_type = 'MEDOID' | |||||
| num_inits = 1 | |||||
| threads = multiprocessing.cpu_count() | |||||
| time_limit = 60000 | |||||
| # algorithm parameters. | |||||
| algo = 'IPFP' | |||||
| initial_solutions = 1 | |||||
| algo_options_suffix = ' --initial-solutions ' + str(initial_solutions) + ' --ratio-runs-from-initial-solutions 1 --initialization-method NODE ' | |||||
| edit_cost_name = 'LETTER2' | |||||
| edit_cost_constants = [0.02987291, 0.0178211, 0.01431966, 0.001, 0.001] | |||||
| ds_name = 'Letter_high' | |||||
| # Load dataset. | |||||
| # dataset = '../../datasets/COIL-DEL/COIL-DEL_A.txt' | |||||
| dataset = '../../../datasets/Letter-high/Letter-high_A.txt' | |||||
| Gn, y_all, label_names = load_dataset(dataset) | |||||
| y_idx = get_same_item_indices(y_all) | |||||
| for i, (y, values) in enumerate(y_idx.items()): | |||||
| Gn_i = [Gn[val] for val in values] | |||||
| break | |||||
| # Set up the environment. | |||||
| ged_env = gedlibpy.GEDEnv() | |||||
| # gedlibpy.restart_env() | |||||
| ged_env.set_edit_cost(edit_cost_name, edit_cost_constant=edit_cost_constants) | |||||
| for G in Gn_i: | |||||
| ged_env.add_nx_graph(G, '') | |||||
| graph_ids = ged_env.get_all_graph_ids() | |||||
| set_median_id = ged_env.add_graph('set_median') | |||||
| gen_median_id = ged_env.add_graph('gen_median') | |||||
| ged_env.init(init_option='EAGER_WITHOUT_SHUFFLED_COPIES') | |||||
| # Set up the estimator. | |||||
| mge = MedianGraphEstimator(ged_env, constant_node_costs(edit_cost_name)) | |||||
| mge.set_refine_method(algo, '--threads ' + str(threads) + ' --initial-solutions ' + str(initial_solutions) + ' --ratio-runs-from-initial-solutions 1') | |||||
| mge_options = '--time-limit ' + str(time_limit) + ' --stdout 2 --init-type ' + init_type | |||||
| mge_options += ' --random-inits ' + str(num_inits) + ' --seed ' + '1' + ' --update-order TRUE --refine FALSE --randomness PSEUDO --parallel TRUE '# @todo: std::to_string(rng()) | |||||
| # Select the GED algorithm. | |||||
| algo_options = '--threads ' + str(threads) + algo_options_suffix | |||||
| mge.set_options(mge_options) | |||||
| mge.set_label_names(node_labels=label_names['node_labels'], | |||||
| edge_labels=label_names['edge_labels'], | |||||
| node_attrs=label_names['node_attrs'], | |||||
| edge_attrs=label_names['edge_attrs']) | |||||
| mge.set_init_method(algo, algo_options) | |||||
| mge.set_descent_method(algo, algo_options) | |||||
| # Run the estimator. | |||||
| mge.run(graph_ids, set_median_id, gen_median_id) | |||||
| # Get SODs. | |||||
| sod_sm = mge.get_sum_of_distances('initialized') | |||||
| sod_gm = mge.get_sum_of_distances('converged') | |||||
| print('sod_sm, sod_gm: ', sod_sm, sod_gm) | |||||
| # Get median graphs. | |||||
| set_median = ged_env.get_nx_graph(set_median_id) | |||||
| gen_median = ged_env.get_nx_graph(gen_median_id) | |||||
| return set_median, gen_median | |||||
| def test_median_graph_estimator_symb(): | |||||
| from gklearn.utils import load_dataset | |||||
| from gklearn.ged.median import MedianGraphEstimator, constant_node_costs | |||||
| from gklearn.gedlib import librariesImport, gedlibpy | |||||
| from gklearn.preimage.utils import get_same_item_indices | |||||
| import multiprocessing | |||||
| # estimator parameters. | |||||
| init_type = 'MEDOID' | |||||
| num_inits = 1 | |||||
| threads = multiprocessing.cpu_count() | |||||
| time_limit = 60000 | |||||
| # algorithm parameters. | |||||
| algo = 'IPFP' | |||||
| initial_solutions = 1 | |||||
| algo_options_suffix = ' --initial-solutions ' + str(initial_solutions) + ' --ratio-runs-from-initial-solutions 1 --initialization-method NODE ' | |||||
| edit_cost_name = 'CONSTANT' | |||||
| edit_cost_constants = [4, 4, 2, 1, 1, 1] | |||||
| ds_name = 'MUTAG' | |||||
| # Load dataset. | |||||
| dataset = '../../../datasets/MUTAG/MUTAG_A.txt' | |||||
| Gn, y_all, label_names = load_dataset(dataset) | |||||
| y_idx = get_same_item_indices(y_all) | |||||
| for i, (y, values) in enumerate(y_idx.items()): | |||||
| Gn_i = [Gn[val] for val in values] | |||||
| break | |||||
| Gn_i = Gn_i[0:10] | |||||
| # Set up the environment. | |||||
| ged_env = gedlibpy.GEDEnv() | |||||
| # gedlibpy.restart_env() | |||||
| ged_env.set_edit_cost(edit_cost_name, edit_cost_constant=edit_cost_constants) | |||||
| for G in Gn_i: | |||||
| ged_env.add_nx_graph(G, '') | |||||
| graph_ids = ged_env.get_all_graph_ids() | |||||
| set_median_id = ged_env.add_graph('set_median') | |||||
| gen_median_id = ged_env.add_graph('gen_median') | |||||
| ged_env.init(init_option='EAGER_WITHOUT_SHUFFLED_COPIES') | |||||
| # Set up the estimator. | |||||
| mge = MedianGraphEstimator(ged_env, constant_node_costs(edit_cost_name)) | |||||
| mge.set_refine_method(algo, '--threads ' + str(threads) + ' --initial-solutions ' + str(initial_solutions) + ' --ratio-runs-from-initial-solutions 1') | |||||
| mge_options = '--time-limit ' + str(time_limit) + ' --stdout 2 --init-type ' + init_type | |||||
| mge_options += ' --random-inits ' + str(num_inits) + ' --seed ' + '1' + ' --update-order TRUE --refine FALSE --randomness PSEUDO --parallel TRUE '# @todo: std::to_string(rng()) | |||||
| # Select the GED algorithm. | |||||
| algo_options = '--threads ' + str(threads) + algo_options_suffix | |||||
| mge.set_options(mge_options) | |||||
| mge.set_label_names(node_labels=label_names['node_labels'], | |||||
| edge_labels=label_names['edge_labels'], | |||||
| node_attrs=label_names['node_attrs'], | |||||
| edge_attrs=label_names['edge_attrs']) | |||||
| mge.set_init_method(algo, algo_options) | |||||
| mge.set_descent_method(algo, algo_options) | |||||
| # Run the estimator. | |||||
| mge.run(graph_ids, set_median_id, gen_median_id) | |||||
| # Get SODs. | |||||
| sod_sm = mge.get_sum_of_distances('initialized') | |||||
| sod_gm = mge.get_sum_of_distances('converged') | |||||
| print('sod_sm, sod_gm: ', sod_sm, sod_gm) | |||||
| # Get median graphs. | |||||
| set_median = ged_env.get_nx_graph(set_median_id) | |||||
| gen_median = ged_env.get_nx_graph(gen_median_id) | |||||
| return set_median, gen_median | |||||
| if __name__ == '__main__': | |||||
| # set_median, gen_median = test_median_graph_estimator() | |||||
| set_median, gen_median = test_median_graph_estimator_symb() | |||||