| @@ -0,0 +1,262 @@ | |||
| #!/usr/bin/env python3 | |||
| # -*- coding: utf-8 -*- | |||
| """ | |||
| Created on Mon Jun 1 11:37:57 2020 | |||
| @author: ljia | |||
| """ | |||
| import multiprocessing | |||
| import numpy as np | |||
| import networkx as nx | |||
| import os | |||
| from gklearn.utils.graphfiles import saveGXL | |||
| from gklearn.preimage import RandomPreimageGenerator | |||
| from gklearn.utils import Dataset | |||
| dir_root = '../results/xp_random_preimage_generation/' | |||
| def xp_random_preimage_generation(kernel_name): | |||
| """ | |||
| Experiment similar to the one in Bakir's paper. A test to check if RandomPreimageGenerator class works correctly. | |||
| Returns | |||
| ------- | |||
| None. | |||
| """ | |||
| alpha1_list = np.linspace(0, 1, 11) | |||
| k_dis_datasets = [] | |||
| k_dis_preimages = [] | |||
| preimages = [] | |||
| bests_from_dataset = [] | |||
| for alpha1 in alpha1_list: | |||
| print('alpha1 =', alpha1, ':\n') | |||
| # set parameters. | |||
| ds_name = 'MUTAG' | |||
| rpg_options = {'k': 5, | |||
| 'r_max': 10, # | |||
| 'l': 500, | |||
| 'alphas': None, | |||
| 'parallel': True, | |||
| 'verbose': 2} | |||
| if kernel_name == 'PathUpToH': | |||
| kernel_options = {'name': 'PathUpToH', | |||
| 'depth': 2, # | |||
| 'k_func': 'MinMax', # | |||
| 'compute_method': 'trie', | |||
| 'parallel': 'imap_unordered', | |||
| # 'parallel': None, | |||
| 'n_jobs': multiprocessing.cpu_count(), | |||
| 'normalize': True, | |||
| 'verbose': 0} | |||
| elif kernel_name == 'Marginalized': | |||
| kernel_options = {'name': 'Marginalized', | |||
| 'p_quit': 0.8, # | |||
| 'n_iteration': 7, # | |||
| 'remove_totters': False, | |||
| 'parallel': 'imap_unordered', | |||
| # 'parallel': None, | |||
| 'n_jobs': multiprocessing.cpu_count(), | |||
| 'normalize': True, | |||
| 'verbose': 0} | |||
| edge_required = True | |||
| irrelevant_labels = {'edge_labels': ['label_0']} | |||
| cut_range = None | |||
| # create/get Gram matrix. | |||
| dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' | |||
| if not os.path.exists(dir_save): | |||
| os.makedirs(dir_save) | |||
| gm_fname = dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm.npz' | |||
| gmfile_exist = os.path.isfile(os.path.abspath(gm_fname)) | |||
| if gmfile_exist: | |||
| gmfile = np.load(gm_fname, allow_pickle=True) # @todo: may not be safe. | |||
| gram_matrix_unnorm = gmfile['gram_matrix_unnorm'] | |||
| time_precompute_gm = gmfile['run_time'] | |||
| # 1. get dataset. | |||
| print('1. getting dataset...') | |||
| dataset_all = Dataset() | |||
| dataset_all.load_predefined_dataset(ds_name) | |||
| dataset_all.trim_dataset(edge_required=edge_required) | |||
| if irrelevant_labels is not None: | |||
| dataset_all.remove_labels(**irrelevant_labels) | |||
| if cut_range is not None: | |||
| dataset_all.cut_graphs(cut_range) | |||
| # # add two "random" graphs. | |||
| # g1 = nx.Graph() | |||
| # g1.add_nodes_from(range(0, 16), label_0='0') | |||
| # g1.add_nodes_from(range(16, 25), label_0='1') | |||
| # g1.add_node(25, label_0='2') | |||
| # g1.add_nodes_from([26, 27], label_0='3') | |||
| # g1.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10), (10, 11), (11, 12), (5, 0), (4, 9), (12, 3), (10, 13), (13, 14), (14, 15), (15, 8), (0, 16), (1, 17), (2, 18), (12, 19), (11, 20), (13, 21), (15, 22), (7, 23), (6, 24), (14, 25), (25, 26), (25, 27)]) | |||
| # g2 = nx.Graph() | |||
| # g2.add_nodes_from(range(0, 12), label_0='0') | |||
| # g2.add_nodes_from(range(12, 19), label_0='1') | |||
| # g2.add_nodes_from([19, 20, 21], label_0='2') | |||
| # g2.add_nodes_from([22, 23], label_0='3') | |||
| # g2.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 19), (19, 7), (7, 8), (8, 9), (9, 10), (10, 11), (11, 20), (20, 7), (5, 0), (4, 8), (0, 12), (1, 13), (2, 14), (9, 15), (10, 16), (11, 17), (6, 18), (3, 21), (21, 22), (21, 23)]) | |||
| # dataset_all.load_graphs([g1, g2] + dataset_all.graphs, targets=None) | |||
| # 2. initialize rpg and setting parameters. | |||
| print('2. initializing rpg and setting parameters...') | |||
| # nb_graphs = len(dataset_all.graphs) - 2 | |||
| # rpg_options['alphas'] = [alpha1, 1 - alpha1] + [0] * nb_graphs | |||
| nb_graphs = len(dataset_all.graphs) | |||
| alphas = [0] * nb_graphs | |||
| alphas[1] = alpha1 | |||
| alphas[6] = 1 - alpha1 | |||
| rpg_options['alphas'] = alphas | |||
| if gmfile_exist: | |||
| rpg_options['gram_matrix_unnorm'] = gram_matrix_unnorm | |||
| rpg_options['runtime_precompute_gm'] = time_precompute_gm | |||
| rpg = RandomPreimageGenerator() | |||
| rpg.dataset = dataset_all | |||
| rpg.set_options(**rpg_options.copy()) | |||
| rpg.kernel_options = kernel_options.copy() | |||
| # 3. compute preimage. | |||
| print('3. computing preimage...') | |||
| rpg.run() | |||
| results = rpg.get_results() | |||
| k_dis_datasets.append(results['k_dis_dataset']) | |||
| k_dis_preimages.append(results['k_dis_preimage']) | |||
| bests_from_dataset.append(rpg.best_from_dataset) | |||
| preimages.append(rpg.preimage) | |||
| # 4. save results. | |||
| # write Gram matrices to file. | |||
| if not gmfile_exist: | |||
| np.savez(dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm', gram_matrix_unnorm=rpg.gram_matrix_unnorm, run_time=results['runtime_precompute_gm']) | |||
| # save graphs. | |||
| fn_best_dataset = dir_save + 'g_best_dataset.' + 'alpha1_' + str(alpha1)[0:3] | |||
| saveGXL(rpg.best_from_dataset, fn_best_dataset + '.gxl', method='default', | |||
| node_labels=dataset_all.node_labels, edge_labels=dataset_all.edge_labels, | |||
| node_attrs=dataset_all.node_attrs, edge_attrs=dataset_all.edge_attrs) | |||
| fn_preimage = dir_save + 'g_preimage.' + 'alpha1_' + str(alpha1)[0:3] | |||
| saveGXL(rpg.preimage, fn_preimage + '.gxl', method='default', | |||
| node_labels=dataset_all.node_labels, edge_labels=dataset_all.edge_labels, | |||
| node_attrs=dataset_all.node_attrs, edge_attrs=dataset_all.edge_attrs) | |||
| # draw graphs. | |||
| __draw_graph(rpg.best_from_dataset, fn_best_dataset) | |||
| __draw_graph(rpg.preimage, fn_preimage) | |||
| # save distances. | |||
| np.savez(dir_save + 'distances.' + ds_name + '.' + kernel_options['name'], k_dis_datasets=k_dis_datasets, k_dis_preimages=k_dis_preimages) | |||
| # plot results figure. | |||
| __plot_results(alpha1_list, k_dis_datasets, k_dis_preimages, dir_save) | |||
| print('\ncomplete.\n') | |||
| return k_dis_datasets, k_dis_preimages, bests_from_dataset, preimages | |||
| def __draw_graph(graph, file_prefix): | |||
| # import matplotlib | |||
| # matplotlib.use('agg') | |||
| import matplotlib.pyplot as plt | |||
| plt.figure() | |||
| pos = nx.spring_layout(graph) | |||
| nx.draw(graph, pos, node_size=500, labels=nx.get_node_attributes(graph, 'label_0'), font_color='w', width=3, with_labels=True) | |||
| plt.savefig(file_prefix + '.eps', format='eps', dpi=300) | |||
| # plt.show() | |||
| plt.clf() | |||
| plt.close() | |||
| def __plot_results(alpha1_list, k_dis_datasets, k_dis_preimages, dir_save): | |||
| import matplotlib.pyplot as plt | |||
| fig, ax = plt.subplots(1, 1, figsize=(7, 4.5)) | |||
| ind = np.arange(len(alpha1_list)) # the x locations for the groups | |||
| width = 0.35 # the width of the bars: can also be len(x) sequence | |||
| ax.bar(ind, k_dis_preimages, width, label='Reconstructed pre-image', zorder=3, color='#133AAC') | |||
| ax.set_xlabel(r'$\alpha \in [0,1]$') | |||
| ax.set_ylabel(r'$d(g_i,g^\star(\alpha))$') | |||
| #ax.set_title('Runtime of the shortest path kernel on all datasets') | |||
| plt.xticks(ind, [str(i)[0:3] for i in alpha1_list]) | |||
| #ax.set_yticks(np.logspace(-16, -3, num=20, base=10)) | |||
| #ax.set_ylim(bottom=1e-15) | |||
| ax.grid(axis='y', zorder=0) | |||
| ax.spines['top'].set_visible(False) | |||
| ax.spines['bottom'].set_visible(False) | |||
| ax.spines['left'].set_visible(False) | |||
| ax.spines['right'].set_visible(False) | |||
| ax.xaxis.set_ticks_position('none') | |||
| ax.plot(ind, k_dis_datasets, 'b.-', label=r'Nearest neighbor in $D_N$', color='orange', zorder=4) | |||
| ax.yaxis.set_ticks_position('none') | |||
| fig.subplots_adjust(bottom=.2) | |||
| fig.legend(loc='lower center', ncol=2, frameon=False) # , ncol=5, labelspacing=0.1, handletextpad=0.4, columnspacing=0.6) | |||
| plt.savefig(dir_save + 'distances in kernel space.eps', format='eps', dpi=300, | |||
| transparent=True, bbox_inches='tight') | |||
| plt.show() | |||
| plt.clf() | |||
| plt.close() | |||
| if __name__ == '__main__': | |||
| # kernel_name = 'PathUpToH' | |||
| kernel_name = 'Marginalized' | |||
| k_dis_datasets, k_dis_preimages, bests_from_dataset, preimages = xp_random_preimage_generation(kernel_name) | |||
| # # save graphs. | |||
| # dir_save = dir_root + 'MUTAG.PathUpToH/' | |||
| # for i, alpha1 in enumerate(np.linspace(0, 1, 11)): | |||
| # fn_best_dataset = dir_save + 'g_best_dataset.' + 'alpha1_' + str(alpha1)[0:3] | |||
| # saveGXL(bests_from_dataset[i], fn_best_dataset + '.gxl', method='default', | |||
| # node_labels=['label_0'], edge_labels=[], | |||
| # node_attrs=[], edge_attrs=[]) | |||
| # fn_preimage = dir_save + 'g_preimage.' + 'alpha1_' + str(alpha1)[0:3] | |||
| # saveGXL(preimages[i], fn_preimage + '.gxl', method='default', | |||
| # node_labels=['label_0'], edge_labels=[], | |||
| # node_attrs=[], edge_attrs=[]) | |||
| # # draw graphs. | |||
| # dir_save = dir_root + 'MUTAG.PathUpToH/' | |||
| # for i, alpha1 in enumerate(np.linspace(0, 1, 11)): | |||
| # fn_best_dataset = dir_save + 'g_best_dataset.' + 'alpha1_' + str(alpha1)[0:3] | |||
| # __draw_graph(bests_from_dataset[i], fn_best_dataset) | |||
| # fn_preimage = dir_save + 'g_preimage.' + 'alpha1_' + str(alpha1)[0:3] | |||
| # __draw_graph(preimages[i], fn_preimage) | |||
| # # plot results figure. | |||
| # alpha1_list = np.linspace(0, 1, 11) | |||
| # dir_save = dir_root + 'MUTAG.PathUpToH/' | |||
| # __plot_results(alpha1_list, k_dis_datasets, k_dis_preimages, dir_save) | |||
| # k_dis_datasets = [0.0, | |||
| # 0.08882515554098754, | |||
| # 0.17765031108197632, | |||
| # 0.2664754666229643, | |||
| # 0.35530062216395264, | |||
| # 0.44412577770494066, | |||
| # 0.35530062216395236, | |||
| # 0.2664754666229643, | |||
| # 0.17765031108197632, | |||
| # 0.08882515554098878, | |||
| # 0.0] | |||
| # k_dis_preimages = [0.0, | |||
| # 0.08882515554098754, | |||
| # 0.17765031108197632, | |||
| # 0.2664754666229643, | |||
| # 0.35530062216395264, | |||
| # 0.44412577770494066, | |||
| # 0.35530062216395236, | |||
| # 0.2664754666229643, | |||
| # 0.17765031108197632, | |||
| # 0.08882515554098878, | |||
| # 0.0] | |||