| @@ -5,15 +5,15 @@ Created on Tue Aug 18 11:21:31 2020 | |||
| @author: ljia | |||
| @references: | |||
| @references: | |||
| [1] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: | |||
| [1] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: | |||
| Hardness results and efficient alternatives. Learning Theory and Kernel | |||
| Machines, pages 129–143, 2003. | |||
| """ | |||
| import sys | |||
| from tqdm import tqdm | |||
| from gklearn.utils import get_iters | |||
| import numpy as np | |||
| import networkx as nx | |||
| from gklearn.utils import SpecialLabel | |||
| @@ -23,7 +23,7 @@ from gklearn.kernels import GraphKernel | |||
| class CommonWalk(GraphKernel): | |||
| def __init__(self, **kwargs): | |||
| GraphKernel.__init__(self) | |||
| self._node_labels = kwargs.get('node_labels', []) | |||
| @@ -39,17 +39,16 @@ class CommonWalk(GraphKernel): | |||
| self._add_dummy_labels(self._graphs) | |||
| if not self._ds_infos['directed']: # convert | |||
| self._graphs = [G.to_directed() for G in self._graphs] | |||
| # compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| from itertools import combinations_with_replacement | |||
| itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout) | |||
| else: | |||
| iterator = itr | |||
| len_itr = int(len(self._graphs) * (len(self._graphs) + 1) / 2) | |||
| iterator = get_iters(itr, desc='Computing kernels', file=sys.stdout, | |||
| length=len_itr, verbose=(self._verbose >= 2)) | |||
| # direct product graph method - exponential | |||
| if self._compute_method == 'exp': | |||
| for i, j in iterator: | |||
| @@ -62,50 +61,51 @@ class CommonWalk(GraphKernel): | |||
| kernel = self._kernel_do_geo(self._graphs[i], self._graphs[j], self._weight) | |||
| gram_matrix[i][j] = kernel | |||
| gram_matrix[j][i] = kernel | |||
| return gram_matrix | |||
| def _compute_gm_imap_unordered(self): | |||
| self._check_graphs(self._graphs) | |||
| self._add_dummy_labels(self._graphs) | |||
| if not self._ds_infos['directed']: # convert | |||
| self._graphs = [G.to_directed() for G in self._graphs] | |||
| # compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| # def init_worker(gn_toshare): | |||
| # global G_gn | |||
| # G_gn = gn_toshare | |||
| # direct product graph method - exponential | |||
| if self._compute_method == 'exp': | |||
| do_fun = self._wrapper_kernel_do_exp | |||
| # direct product graph method - geometric | |||
| elif self._compute_method == 'geo': | |||
| do_fun = self._wrapper_kernel_do_geo | |||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=_init_worker_gm, | |||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=_init_worker_gm, | |||
| glbv=(self._graphs,), n_jobs=self._n_jobs, verbose=self._verbose) | |||
| return gram_matrix | |||
| def _compute_kernel_list_series(self, g1, g_list): | |||
| self._check_graphs(g_list + [g1]) | |||
| self._add_dummy_labels(g_list + [g1]) | |||
| if not self._ds_infos['directed']: # convert | |||
| g1 = g1.to_directed() | |||
| g_list = [G.to_directed() for G in g_list] | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout) | |||
| iterator = get_iters(range(len(g_list)), desc='Computing kernels', | |||
| file=sys.stdout, length=len(g_list), verbose=(self._verbose >= 2)) | |||
| else: | |||
| iterator = range(len(g_list)) | |||
| # direct product graph method - exponential | |||
| if self._compute_method == 'exp': | |||
| for i in iterator: | |||
| @@ -116,17 +116,17 @@ class CommonWalk(GraphKernel): | |||
| for i in iterator: | |||
| kernel = self._kernel_do_geo(g1, g_list[i], self._weight) | |||
| kernel_list[i] = kernel | |||
| return kernel_list | |||
| def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
| self._check_graphs(g_list + [g1]) | |||
| self._add_dummy_labels(g_list + [g1]) | |||
| if not self._ds_infos['directed']: # convert | |||
| g1 = g1.to_directed() | |||
| g_list = [G.to_directed() for G in g_list] | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| @@ -134,61 +134,61 @@ class CommonWalk(GraphKernel): | |||
| # global G_g1, G_g_list | |||
| # G_g1 = g1_toshare | |||
| # G_g_list = g_list_toshare | |||
| # direct product graph method - exponential | |||
| if self._compute_method == 'exp': | |||
| do_fun = self._wrapper_kernel_list_do_exp | |||
| # direct product graph method - geometric | |||
| elif self._compute_method == 'geo': | |||
| do_fun = self._wrapper_kernel_list_do_geo | |||
| def func_assign(result, var_to_assign): | |||
| def func_assign(result, var_to_assign): | |||
| var_to_assign[result[0]] = result[1] | |||
| itr = range(len(g_list)) | |||
| len_itr = len(g_list) | |||
| parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||
| init_worker=_init_worker_list, glbv=(g1, g_list), method='imap_unordered', | |||
| init_worker=_init_worker_list, glbv=(g1, g_list), method='imap_unordered', | |||
| n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | |||
| return kernel_list | |||
| def _wrapper_kernel_list_do_exp(self, itr): | |||
| return itr, self._kernel_do_exp(G_g1, G_g_list[itr], self._weight) | |||
| def _wrapper_kernel_list_do_geo(self, itr): | |||
| return itr, self._kernel_do_geo(G_g1, G_g_list[itr], self._weight) | |||
| def _compute_single_kernel_series(self, g1, g2): | |||
| self._check_graphs([g1] + [g2]) | |||
| self._add_dummy_labels([g1] + [g2]) | |||
| if not self._ds_infos['directed']: # convert | |||
| g1 = g1.to_directed() | |||
| g2 = g2.to_directed() | |||
| # direct product graph method - exponential | |||
| if self._compute_method == 'exp': | |||
| kernel = self._kernel_do_exp(g1, g2, self._weight) | |||
| kernel = self._kernel_do_exp(g1, g2, self._weight) | |||
| # direct product graph method - geometric | |||
| elif self._compute_method == 'geo': | |||
| kernel = self._kernel_do_geo(g1, g2, self._weight) | |||
| kernel = self._kernel_do_geo(g1, g2, self._weight) | |||
| return kernel | |||
| return kernel | |||
| def _kernel_do_exp(self, g1, g2, beta): | |||
| """Compute common walk graph kernel between 2 graphs using exponential | |||
| """Compute common walk graph kernel between 2 graphs using exponential | |||
| series. | |||
| Parameters | |||
| ---------- | |||
| g1, g2 : NetworkX graphs | |||
| Graphs between which the kernels are computed. | |||
| beta : integer | |||
| Weight. | |||
| Return | |||
| ------ | |||
| kernel : float | |||
| @@ -200,9 +200,9 @@ class CommonWalk(GraphKernel): | |||
| if nx.number_of_nodes(gp) < 2: | |||
| return 0 | |||
| A = nx.adjacency_matrix(gp).todense() | |||
| ew, ev = np.linalg.eig(A) | |||
| # # remove imaginary part if possible. | |||
| # # remove imaginary part if possible. | |||
| # # @todo: don't know if it is necessary. | |||
| # for i in range(len(ew)): | |||
| # if np.abs(ew[i].imag) < 1e-9: | |||
| @@ -220,27 +220,27 @@ class CommonWalk(GraphKernel): | |||
| kernel = exp_D.sum() | |||
| if (kernel.real == 0 and np.abs(kernel.imag) < 1e-9) or np.abs(kernel.imag / kernel.real) < 1e-9: | |||
| kernel = kernel.real | |||
| return kernel | |||
| def _wrapper_kernel_do_exp(self, itr): | |||
| i = itr[0] | |||
| j = itr[1] | |||
| return i, j, self._kernel_do_exp(G_gn[i], G_gn[j], self._weight) | |||
| def _kernel_do_geo(self, g1, g2, gamma): | |||
| """Compute common walk graph kernel between 2 graphs using geometric | |||
| """Compute common walk graph kernel between 2 graphs using geometric | |||
| series. | |||
| Parameters | |||
| ---------- | |||
| g1, g2 : NetworkX graphs | |||
| Graphs between which the kernels are computed. | |||
| gamma : integer | |||
| Weight. | |||
| Return | |||
| ------ | |||
| kernel : float | |||
| @@ -258,19 +258,19 @@ class CommonWalk(GraphKernel): | |||
| # except np.linalg.LinAlgError: | |||
| # return np.nan | |||
| def _wrapper_kernel_do_geo(self, itr): | |||
| i = itr[0] | |||
| j = itr[1] | |||
| return i, j, self._kernel_do_geo(G_gn[i], G_gn[j], self._weight) | |||
| def _check_graphs(self, Gn): | |||
| for g in Gn: | |||
| if nx.number_of_nodes(g) == 1: | |||
| raise Exception('Graphs must contain more than 1 nodes to construct adjacency matrices.') | |||
| def _add_dummy_labels(self, Gn): | |||
| if len(self._node_labels) == 0 or (len(self._node_labels) == 1 and self._node_labels[0] == SpecialLabel.DUMMY): | |||
| for i in range(len(Gn)): | |||
| @@ -280,13 +280,13 @@ class CommonWalk(GraphKernel): | |||
| for i in range(len(Gn)): | |||
| nx.set_edge_attributes(Gn[i], '0', SpecialLabel.DUMMY) | |||
| self._edge_labels = [SpecialLabel.DUMMY] | |||
| def _init_worker_gm(gn_toshare): | |||
| global G_gn | |||
| G_gn = gn_toshare | |||
| def _init_worker_list(g1_toshare, g_list_toshare): | |||
| global G_g1, G_g_list | |||
| G_g1 = g1_toshare | |||
| @@ -5,13 +5,13 @@ Created on Thu Aug 20 16:09:51 2020 | |||
| @author: ljia | |||
| @references: | |||
| @references: | |||
| [1] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph kernels. Journal of Machine Learning Research, 11(Apr):1201–1242, 2010. | |||
| """ | |||
| import sys | |||
| from tqdm import tqdm | |||
| from gklearn.utils import get_iters | |||
| import numpy as np | |||
| import networkx as nx | |||
| from scipy.sparse import identity | |||
| @@ -22,8 +22,8 @@ from gklearn.utils.utils import compute_vertex_kernels | |||
| class ConjugateGradient(RandomWalkMeta): | |||
| def __init__(self, **kwargs): | |||
| super().__init__(**kwargs) | |||
| self._node_kernels = kwargs.get('node_kernels', None) | |||
| @@ -32,33 +32,28 @@ class ConjugateGradient(RandomWalkMeta): | |||
| self._edge_labels = kwargs.get('edge_labels', []) | |||
| self._node_attrs = kwargs.get('node_attrs', []) | |||
| self._edge_attrs = kwargs.get('edge_attrs', []) | |||
| def _compute_gm_series(self): | |||
| self._check_edge_weight(self._graphs, self._verbose) | |||
| self._check_graphs(self._graphs) | |||
| lmda = self._weight | |||
| # Compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| # Reindex nodes using consecutive integers for the convenience of kernel computation. | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(self._graphs, desc='Reindex vertices', file=sys.stdout) | |||
| else: | |||
| iterator = self._graphs | |||
| iterator = get_iters(self._graphs, desc='Reindex vertices', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
| self._graphs = [nx.convert_node_labels_to_integers(g, first_label=0, label_attribute='label_orignal') for g in iterator] | |||
| if self._p is None and self._q is None: # p and q are uniform distributions as default. | |||
| from itertools import combinations_with_replacement | |||
| itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout) | |||
| else: | |||
| iterator = itr | |||
| len_itr = int(len(self._graphs) * (len(self._graphs) + 1) / 2) | |||
| iterator = get_iters(itr, desc='Computing kernels', file=sys.stdout, length=len_itr, verbose=(self._verbose >= 2)) | |||
| for i, j in iterator: | |||
| kernel = self._kernel_do(self._graphs[i], self._graphs[j], lmda) | |||
| gram_matrix[i][j] = kernel | |||
| @@ -66,92 +61,79 @@ class ConjugateGradient(RandomWalkMeta): | |||
| else: # @todo | |||
| pass | |||
| return gram_matrix | |||
| def _compute_gm_imap_unordered(self): | |||
| self._check_edge_weight(self._graphs, self._verbose) | |||
| self._check_graphs(self._graphs) | |||
| # Compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| # @todo: parallel this. | |||
| # Reindex nodes using consecutive integers for the convenience of kernel computation. | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(self._graphs, desc='Reindex vertices', file=sys.stdout) | |||
| else: | |||
| iterator = self._graphs | |||
| iterator = get_iters(self._graphs, desc='Reindex vertices', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
| self._graphs = [nx.convert_node_labels_to_integers(g, first_label=0, label_attribute='label_orignal') for g in iterator] | |||
| if self._p is None and self._q is None: # p and q are uniform distributions as default. | |||
| def init_worker(gn_toshare): | |||
| global G_gn | |||
| G_gn = gn_toshare | |||
| do_fun = self._wrapper_kernel_do | |||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
| glbv=(self._graphs,), n_jobs=self._n_jobs, verbose=self._verbose) | |||
| else: # @todo | |||
| pass | |||
| return gram_matrix | |||
| def _compute_kernel_list_series(self, g1, g_list): | |||
| self._check_edge_weight(g_list + [g1], self._verbose) | |||
| self._check_graphs(g_list + [g1]) | |||
| lmda = self._weight | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| # Reindex nodes using consecutive integers for the convenience of kernel computation. | |||
| g1 = nx.convert_node_labels_to_integers(g1, first_label=0, label_attribute='label_orignal') | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(g_list, desc='Reindex vertices', file=sys.stdout) | |||
| else: | |||
| iterator = g_list | |||
| iterator = get_iters(g_list, desc='Reindex vertices', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
| g_list = [nx.convert_node_labels_to_integers(g, first_label=0, label_attribute='label_orignal') for g in iterator] | |||
| if self._p is None and self._q is None: # p and q are uniform distributions as default. | |||
| iterator = get_iters(range(len(g_list)), desc='Computing kernels', file=sys.stdout, length=len(g_list), verbose=(self._verbose >= 2)) | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout) | |||
| else: | |||
| iterator = range(len(g_list)) | |||
| for i in iterator: | |||
| kernel = self._kernel_do(g1, g_list[i], lmda) | |||
| kernel_list[i] = kernel | |||
| else: # @todo | |||
| pass | |||
| return kernel_list | |||
| def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
| self._check_edge_weight(g_list + [g1], self._verbose) | |||
| self._check_graphs(g_list + [g1]) | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| # Reindex nodes using consecutive integers for the convenience of kernel computation. | |||
| g1 = nx.convert_node_labels_to_integers(g1, first_label=0, label_attribute='label_orignal') | |||
| # @todo: parallel this. | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(g_list, desc='Reindex vertices', file=sys.stdout) | |||
| else: | |||
| iterator = g_list | |||
| iterator = get_iters(g_list, desc='Reindex vertices', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
| g_list = [nx.convert_node_labels_to_integers(g, first_label=0, label_attribute='label_orignal') for g in iterator] | |||
| if self._p is None and self._q is None: # p and q are uniform distributions as default. | |||
| def init_worker(g1_toshare, g_list_toshare): | |||
| @@ -159,56 +141,56 @@ class ConjugateGradient(RandomWalkMeta): | |||
| G_g1 = g1_toshare | |||
| G_g_list = g_list_toshare | |||
| do_fun = self._wrapper_kernel_list_do | |||
| def func_assign(result, var_to_assign): | |||
| do_fun = self._wrapper_kernel_list_do | |||
| def func_assign(result, var_to_assign): | |||
| var_to_assign[result[0]] = result[1] | |||
| itr = range(len(g_list)) | |||
| len_itr = len(g_list) | |||
| parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||
| init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered', | |||
| init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered', | |||
| n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | |||
| else: # @todo | |||
| pass | |||
| return kernel_list | |||
| def _wrapper_kernel_list_do(self, itr): | |||
| return itr, self._kernel_do(G_g1, G_g_list[itr], self._weight) | |||
| def _compute_single_kernel_series(self, g1, g2): | |||
| self._check_edge_weight([g1] + [g2], self._verbose) | |||
| self._check_graphs([g1] + [g2]) | |||
| lmda = self._weight | |||
| # Reindex nodes using consecutive integers for the convenience of kernel computation. | |||
| g1 = nx.convert_node_labels_to_integers(g1, first_label=0, label_attribute='label_orignal') | |||
| g2 = nx.convert_node_labels_to_integers(g2, first_label=0, label_attribute='label_orignal') | |||
| if self._p is None and self._q is None: # p and q are uniform distributions as default. | |||
| kernel = self._kernel_do(g1, g2, lmda) | |||
| else: # @todo | |||
| pass | |||
| return kernel | |||
| return kernel | |||
| def _kernel_do(self, g1, g2, lmda): | |||
| # Frist, compute kernels between all pairs of nodes using the method borrowed | |||
| # from FCSP. It is faster than directly computing all edge kernels | |||
| # from FCSP. It is faster than directly computing all edge kernels | |||
| # when $d_1d_2>2$, where $d_1$ and $d_2$ are vertex degrees of the | |||
| # graphs compared, which is the most case we went though. For very | |||
| # graphs compared, which is the most case we went though. For very | |||
| # sparse graphs, this would be slow. | |||
| vk_dict = self._compute_vertex_kernels(g1, g2) | |||
| # Compute the weight matrix of the direct product graph. | |||
| w_times, w_dim = self._compute_weight_matrix(g1, g2, vk_dict) | |||
| # Compute the weight matrix of the direct product graph. | |||
| w_times, w_dim = self._compute_weight_matrix(g1, g2, vk_dict) | |||
| # use uniform distribution if there is no prior knowledge. | |||
| p_times_uni = 1 / w_dim | |||
| A = identity(w_times.shape[0]) - w_times * lmda | |||
| @@ -217,27 +199,27 @@ class ConjugateGradient(RandomWalkMeta): | |||
| # use uniform distribution if there is no prior knowledge. | |||
| q_times = np.full((1, w_dim), p_times_uni) | |||
| return np.dot(q_times, x) | |||
| def _wrapper_kernel_do(self, itr): | |||
| i = itr[0] | |||
| j = itr[1] | |||
| return i, j, self._kernel_do(G_gn[i], G_gn[j], self._weight) | |||
| def _func_fp(x, p_times, lmda, w_times): | |||
| haha = w_times * x | |||
| haha = lmda * haha | |||
| haha = p_times + haha | |||
| return p_times + lmda * np.dot(w_times, x) | |||
| def _compute_vertex_kernels(self, g1, g2): | |||
| """Compute vertex kernels between vertices of two graphs. | |||
| """ | |||
| return compute_vertex_kernels(g1, g2, self._node_kernels, node_labels=self._node_labels, node_attrs=self._node_attrs) | |||
| # @todo: move if out to make it faster. | |||
| # @todo: node/edge kernels use direct function rather than dicts. | |||
| def _compute_weight_matrix(self, g1, g2, vk_dict): | |||
| @@ -250,20 +232,20 @@ class ConjugateGradient(RandomWalkMeta): | |||
| e1_attrs = [e1[2][ea] for ea in self._edge_attrs] | |||
| e2_attrs = [e2[2][ea] for ea in self._edge_attrs] | |||
| return ke(e1_labels, e2_labels, e1_attrs, e2_attrs) | |||
| def compute_ek_10(e1, e2, ke): | |||
| e1_labels = [e1[2][el] for el in self._edge_labels] | |||
| e2_labels = [e2[2][el] for el in self._edge_labels] | |||
| return ke(e1_labels, e2_labels) | |||
| def compute_ek_01(e1, e2, ke): | |||
| e1_attrs = [e1[2][ea] for ea in self._edge_attrs] | |||
| e2_attrs = [e2[2][ea] for ea in self._edge_attrs] | |||
| return ke(e1_attrs, e2_attrs) | |||
| def compute_ek_00(e1, e2, ke): | |||
| return 1 | |||
| # Select the proper edge kernel. | |||
| if len(self._edge_labels) > 0: | |||
| # edge symb and non-synb labeled | |||
| @@ -283,11 +265,11 @@ class ConjugateGradient(RandomWalkMeta): | |||
| else: | |||
| ke = None | |||
| ek_temp = compute_ek_00 # @todo: check how much slower is this. | |||
| # Compute the weight matrix. | |||
| w_dim = nx.number_of_nodes(g1) * nx.number_of_nodes(g2) | |||
| w_times = np.zeros((w_dim, w_dim)) | |||
| if vk_dict: # node labeled | |||
| if self._ds_infos['directed']: | |||
| for e1 in g1.edges(data=True): | |||
| @@ -5,13 +5,13 @@ Created on Thu Aug 20 16:09:51 2020 | |||
| @author: ljia | |||
| @references: | |||
| @references: | |||
| [1] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph kernels. Journal of Machine Learning Research, 11(Apr):1201–1242, 2010. | |||
| """ | |||
| import sys | |||
| from tqdm import tqdm | |||
| from gklearn.utils import get_iters | |||
| import numpy as np | |||
| import networkx as nx | |||
| from scipy import optimize | |||
| @@ -22,8 +22,8 @@ from gklearn.utils.utils import compute_vertex_kernels | |||
| class FixedPoint(RandomWalkMeta): | |||
| def __init__(self, **kwargs): | |||
| super().__init__(**kwargs) | |||
| self._node_kernels = kwargs.get('node_kernels', None) | |||
| @@ -32,33 +32,28 @@ class FixedPoint(RandomWalkMeta): | |||
| self._edge_labels = kwargs.get('edge_labels', []) | |||
| self._node_attrs = kwargs.get('node_attrs', []) | |||
| self._edge_attrs = kwargs.get('edge_attrs', []) | |||
| def _compute_gm_series(self): | |||
| self._check_edge_weight(self._graphs, self._verbose) | |||
| self._check_graphs(self._graphs) | |||
| lmda = self._weight | |||
| # Compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| # Reindex nodes using consecutive integers for the convenience of kernel computation. | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(self._graphs, desc='Reindex vertices', file=sys.stdout) | |||
| else: | |||
| iterator = self._graphs | |||
| iterator = get_iters(self._graphs, desc='Reindex vertices', file=sys.stdout,verbose=(self._verbose >= 2)) | |||
| self._graphs = [nx.convert_node_labels_to_integers(g, first_label=0, label_attribute='label_orignal') for g in iterator] | |||
| if self._p is None and self._q is None: # p and q are uniform distributions as default. | |||
| from itertools import combinations_with_replacement | |||
| itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout) | |||
| else: | |||
| iterator = itr | |||
| len_itr = int(len(self._graphs) * (len(self._graphs) + 1) / 2) | |||
| iterator = get_iters(itr, desc='Computing kernels', file=sys.stdout, length=len_itr, verbose=(self._verbose >= 2)) | |||
| for i, j in iterator: | |||
| kernel = self._kernel_do(self._graphs[i], self._graphs[j], lmda) | |||
| gram_matrix[i][j] = kernel | |||
| @@ -66,92 +61,80 @@ class FixedPoint(RandomWalkMeta): | |||
| else: # @todo | |||
| pass | |||
| return gram_matrix | |||
| def _compute_gm_imap_unordered(self): | |||
| self._check_edge_weight(self._graphs, self._verbose) | |||
| self._check_graphs(self._graphs) | |||
| # Compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| # @todo: parallel this. | |||
| # Reindex nodes using consecutive integers for the convenience of kernel computation. | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(self._graphs, desc='Reindex vertices', file=sys.stdout) | |||
| else: | |||
| iterator = self._graphs | |||
| iterator = get_iters(self._graphs, desc='Reindex vertices', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
| self._graphs = [nx.convert_node_labels_to_integers(g, first_label=0, label_attribute='label_orignal') for g in iterator] | |||
| if self._p is None and self._q is None: # p and q are uniform distributions as default. | |||
| def init_worker(gn_toshare): | |||
| global G_gn | |||
| G_gn = gn_toshare | |||
| do_fun = self._wrapper_kernel_do | |||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
| glbv=(self._graphs,), n_jobs=self._n_jobs, verbose=self._verbose) | |||
| else: # @todo | |||
| pass | |||
| return gram_matrix | |||
| def _compute_kernel_list_series(self, g1, g_list): | |||
| self._check_edge_weight(g_list + [g1], self._verbose) | |||
| self._check_graphs(g_list + [g1]) | |||
| lmda = self._weight | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| # Reindex nodes using consecutive integers for the convenience of kernel computation. | |||
| g1 = nx.convert_node_labels_to_integers(g1, first_label=0, label_attribute='label_orignal') | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(g_list, desc='Reindex vertices', file=sys.stdout) | |||
| else: | |||
| iterator = g_list | |||
| iterator = get_iters(g_list, desc='Reindex vertices', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
| g_list = [nx.convert_node_labels_to_integers(g, first_label=0, label_attribute='label_orignal') for g in iterator] | |||
| if self._p is None and self._q is None: # p and q are uniform distributions as default. | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout) | |||
| else: | |||
| iterator = range(len(g_list)) | |||
| iterator = get_iters(range(len(g_list)), desc='Computing kernels', file=sys.stdout, length=len(g_list), verbose=(self._verbose >= 2)) | |||
| for i in iterator: | |||
| kernel = self._kernel_do(g1, g_list[i], lmda) | |||
| kernel_list[i] = kernel | |||
| else: # @todo | |||
| pass | |||
| return kernel_list | |||
| def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
| self._check_edge_weight(g_list + [g1], self._verbose) | |||
| self._check_graphs(g_list + [g1]) | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| # Reindex nodes using consecutive integers for the convenience of kernel computation. | |||
| g1 = nx.convert_node_labels_to_integers(g1, first_label=0, label_attribute='label_orignal') | |||
| # @todo: parallel this. | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(g_list, desc='Reindex vertices', file=sys.stdout) | |||
| else: | |||
| iterator = g_list | |||
| iterator = get_iters(g_list, desc='Reindex vertices', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
| g_list = [nx.convert_node_labels_to_integers(g, first_label=0, label_attribute='label_orignal') for g in iterator] | |||
| if self._p is None and self._q is None: # p and q are uniform distributions as default. | |||
| def init_worker(g1_toshare, g_list_toshare): | |||
| @@ -159,56 +142,56 @@ class FixedPoint(RandomWalkMeta): | |||
| G_g1 = g1_toshare | |||
| G_g_list = g_list_toshare | |||
| do_fun = self._wrapper_kernel_list_do | |||
| def func_assign(result, var_to_assign): | |||
| do_fun = self._wrapper_kernel_list_do | |||
| def func_assign(result, var_to_assign): | |||
| var_to_assign[result[0]] = result[1] | |||
| itr = range(len(g_list)) | |||
| len_itr = len(g_list) | |||
| parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||
| init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered', | |||
| init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered', | |||
| n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | |||
| else: # @todo | |||
| pass | |||
| return kernel_list | |||
| def _wrapper_kernel_list_do(self, itr): | |||
| return itr, self._kernel_do(G_g1, G_g_list[itr], self._weight) | |||
| def _compute_single_kernel_series(self, g1, g2): | |||
| self._check_edge_weight([g1] + [g2], self._verbose) | |||
| self._check_graphs([g1] + [g2]) | |||
| lmda = self._weight | |||
| # Reindex nodes using consecutive integers for the convenience of kernel computation. | |||
| g1 = nx.convert_node_labels_to_integers(g1, first_label=0, label_attribute='label_orignal') | |||
| g2 = nx.convert_node_labels_to_integers(g2, first_label=0, label_attribute='label_orignal') | |||
| if self._p is None and self._q is None: # p and q are uniform distributions as default. | |||
| kernel = self._kernel_do(g1, g2, lmda) | |||
| else: # @todo | |||
| pass | |||
| return kernel | |||
| return kernel | |||
| def _kernel_do(self, g1, g2, lmda): | |||
| # Frist, compute kernels between all pairs of nodes using the method borrowed | |||
| # from FCSP. It is faster than directly computing all edge kernels | |||
| # from FCSP. It is faster than directly computing all edge kernels | |||
| # when $d_1d_2>2$, where $d_1$ and $d_2$ are vertex degrees of the | |||
| # graphs compared, which is the most case we went though. For very | |||
| # graphs compared, which is the most case we went though. For very | |||
| # sparse graphs, this would be slow. | |||
| vk_dict = self._compute_vertex_kernels(g1, g2) | |||
| # Compute the weight matrix of the direct product graph. | |||
| w_times, w_dim = self._compute_weight_matrix(g1, g2, vk_dict) | |||
| # Compute the weight matrix of the direct product graph. | |||
| w_times, w_dim = self._compute_weight_matrix(g1, g2, vk_dict) | |||
| # use uniform distribution if there is no prior knowledge. | |||
| p_times_uni = 1 / w_dim | |||
| p_times = np.full((w_dim, 1), p_times_uni) | |||
| @@ -216,27 +199,27 @@ class FixedPoint(RandomWalkMeta): | |||
| # use uniform distribution if there is no prior knowledge. | |||
| q_times = np.full((1, w_dim), p_times_uni) | |||
| return np.dot(q_times, x) | |||
| def _wrapper_kernel_do(self, itr): | |||
| i = itr[0] | |||
| j = itr[1] | |||
| return i, j, self._kernel_do(G_gn[i], G_gn[j], self._weight) | |||
| def _func_fp(self, x, p_times, lmda, w_times): | |||
| haha = w_times * x | |||
| haha = lmda * haha | |||
| haha = p_times + haha | |||
| return p_times + lmda * np.dot(w_times, x) | |||
| def _compute_vertex_kernels(self, g1, g2): | |||
| """Compute vertex kernels between vertices of two graphs. | |||
| """ | |||
| return compute_vertex_kernels(g1, g2, self._node_kernels, node_labels=self._node_labels, node_attrs=self._node_attrs) | |||
| # @todo: move if out to make it faster. | |||
| # @todo: node/edge kernels use direct function rather than dicts. | |||
| def _compute_weight_matrix(self, g1, g2, vk_dict): | |||
| @@ -249,20 +232,20 @@ class FixedPoint(RandomWalkMeta): | |||
| e1_attrs = [e1[2][ea] for ea in self._edge_attrs] | |||
| e2_attrs = [e2[2][ea] for ea in self._edge_attrs] | |||
| return ke(e1_labels, e2_labels, e1_attrs, e2_attrs) | |||
| def compute_ek_10(e1, e2, ke): | |||
| e1_labels = [e1[2][el] for el in self._edge_labels] | |||
| e2_labels = [e2[2][el] for el in self._edge_labels] | |||
| return ke(e1_labels, e2_labels) | |||
| def compute_ek_01(e1, e2, ke): | |||
| e1_attrs = [e1[2][ea] for ea in self._edge_attrs] | |||
| e2_attrs = [e2[2][ea] for ea in self._edge_attrs] | |||
| return ke(e1_attrs, e2_attrs) | |||
| def compute_ek_00(e1, e2, ke): | |||
| return 1 | |||
| # Select the proper edge kernel. | |||
| if len(self._edge_labels) > 0: | |||
| # edge symb and non-synb labeled | |||
| @@ -282,11 +265,11 @@ class FixedPoint(RandomWalkMeta): | |||
| else: | |||
| ke = None | |||
| ek_temp = compute_ek_00 # @todo: check how much slower is this. | |||
| # Compute the weight matrix. | |||
| w_dim = nx.number_of_nodes(g1) * nx.number_of_nodes(g2) | |||
| w_times = np.zeros((w_dim, w_dim)) | |||
| if vk_dict: # node labeled | |||
| if self._ds_infos['directed']: | |||
| for e1 in g1.edges(data=True): | |||
| @@ -7,19 +7,19 @@ Created on Wed Jun 3 22:22:57 2020 | |||
| @references: | |||
| [1] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between | |||
| labeled graphs. In Proceedings of the 20th International Conference on | |||
| [1] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between | |||
| labeled graphs. In Proceedings of the 20th International Conference on | |||
| Machine Learning, Washington, DC, United States, 2003. | |||
| [2] Pierre Mahé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and | |||
| Jean-Philippe Vert. Extensions of marginalized graph kernels. In | |||
| Proceedings of the twenty-first international conference on Machine | |||
| [2] Pierre Mahé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and | |||
| Jean-Philippe Vert. Extensions of marginalized graph kernels. In | |||
| Proceedings of the twenty-first international conference on Machine | |||
| learning, page 70. ACM, 2004. | |||
| """ | |||
| import sys | |||
| from multiprocessing import Pool | |||
| from tqdm import tqdm | |||
| from gklearn.utils import get_iters | |||
| import numpy as np | |||
| import networkx as nx | |||
| from gklearn.utils import SpecialLabel | |||
| @@ -30,7 +30,7 @@ from gklearn.kernels import GraphKernel | |||
| class Marginalized(GraphKernel): | |||
| def __init__(self, **kwargs): | |||
| GraphKernel.__init__(self) | |||
| self._node_labels = kwargs.get('node_labels', []) | |||
| @@ -44,35 +44,31 @@ class Marginalized(GraphKernel): | |||
| def _compute_gm_series(self): | |||
| self._add_dummy_labels(self._graphs) | |||
| if self._remove_totters: | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(self._graphs, desc='removing tottering', file=sys.stdout) | |||
| else: | |||
| iterator = self._graphs | |||
| iterator = get_iters(self._graphs, desc='removing tottering', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
| # @todo: this may not work. | |||
| self._graphs = [untotterTransformation(G, self._node_labels, self._edge_labels) for G in iterator] | |||
| # compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| from itertools import combinations_with_replacement | |||
| itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout) | |||
| else: | |||
| iterator = itr | |||
| len_itr = int(len(self._graphs) * (len(self._graphs) + 1) / 2) | |||
| iterator = get_iters(itr, desc='Computing kernels', file=sys.stdout, | |||
| length=len_itr, verbose=(self._verbose >= 2)) | |||
| for i, j in iterator: | |||
| kernel = self._kernel_do(self._graphs[i], self._graphs[j]) | |||
| gram_matrix[i][j] = kernel | |||
| gram_matrix[j][i] = kernel # @todo: no directed graph considered? | |||
| return gram_matrix | |||
| def _compute_gm_imap_unordered(self): | |||
| self._add_dummy_labels(self._graphs) | |||
| if self._remove_totters: | |||
| pool = Pool(self._n_jobs) | |||
| itr = range(0, len(self._graphs)) | |||
| @@ -81,57 +77,49 @@ class Marginalized(GraphKernel): | |||
| else: | |||
| chunksize = 100 | |||
| remove_fun = self._wrapper_untotter | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(pool.imap_unordered(remove_fun, itr, chunksize), | |||
| desc='removing tottering', file=sys.stdout) | |||
| else: | |||
| iterator = pool.imap_unordered(remove_fun, itr, chunksize) | |||
| iterator = get_iters(pool.imap_unordered(remove_fun, itr, chunksize), | |||
| desc='removing tottering', file=sys.stdout, | |||
| length=len(self._graphs), verbose=(self._verbose >= 2)) | |||
| for i, g in iterator: | |||
| self._graphs[i] = g | |||
| pool.close() | |||
| pool.join() | |||
| # compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| def init_worker(gn_toshare): | |||
| global G_gn | |||
| G_gn = gn_toshare | |||
| do_fun = self._wrapper_kernel_do | |||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
| glbv=(self._graphs,), n_jobs=self._n_jobs, verbose=self._verbose) | |||
| return gram_matrix | |||
| def _compute_kernel_list_series(self, g1, g_list): | |||
| self._add_dummy_labels(g_list + [g1]) | |||
| if self._remove_totters: | |||
| g1 = untotterTransformation(g1, self._node_labels, self._edge_labels) # @todo: this may not work. | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(g_list, desc='removing tottering', file=sys.stdout) | |||
| else: | |||
| iterator = g_list | |||
| iterator = get_iters(g_list, desc='removing tottering', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
| # @todo: this may not work. | |||
| g_list = [untotterTransformation(G, self._node_labels, self._edge_labels) for G in iterator] | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout) | |||
| else: | |||
| iterator = range(len(g_list)) | |||
| iterator = get_iters(range(len(g_list)), desc='Computing kernels', file=sys.stdout, length=len(g_list), verbose=(self._verbose >= 2)) | |||
| for i in iterator: | |||
| kernel = self._kernel_do(g1, g_list[i]) | |||
| kernel_list[i] = kernel | |||
| return kernel_list | |||
| def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
| self._add_dummy_labels(g_list + [g1]) | |||
| if self._remove_totters: | |||
| g1 = untotterTransformation(g1, self._node_labels, self._edge_labels) # @todo: this may not work. | |||
| pool = Pool(self._n_jobs) | |||
| @@ -141,16 +129,14 @@ class Marginalized(GraphKernel): | |||
| else: | |||
| chunksize = 100 | |||
| remove_fun = self._wrapper_untotter | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(pool.imap_unordered(remove_fun, itr, chunksize), | |||
| desc='removing tottering', file=sys.stdout) | |||
| else: | |||
| iterator = pool.imap_unordered(remove_fun, itr, chunksize) | |||
| iterator = get_iters(pool.imap_unordered(remove_fun, itr, chunksize), | |||
| desc='removing tottering', file=sys.stdout, | |||
| length=len(g_list), verbose=(self._verbose >= 2)) | |||
| for i, g in iterator: | |||
| g_list[i] = g | |||
| pool.close() | |||
| pool.join() | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| @@ -159,38 +145,38 @@ class Marginalized(GraphKernel): | |||
| G_g1 = g1_toshare | |||
| G_g_list = g_list_toshare | |||
| do_fun = self._wrapper_kernel_list_do | |||
| def func_assign(result, var_to_assign): | |||
| def func_assign(result, var_to_assign): | |||
| var_to_assign[result[0]] = result[1] | |||
| itr = range(len(g_list)) | |||
| len_itr = len(g_list) | |||
| parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||
| init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered', | |||
| init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered', | |||
| n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | |||
| return kernel_list | |||
| def _wrapper_kernel_list_do(self, itr): | |||
| return itr, self._kernel_do(G_g1, G_g_list[itr]) | |||
| def _compute_single_kernel_series(self, g1, g2): | |||
| self._add_dummy_labels([g1] + [g2]) | |||
| if self._remove_totters: | |||
| g1 = untotterTransformation(g1, self._node_labels, self._edge_labels) # @todo: this may not work. | |||
| g2 = untotterTransformation(g2, self._node_labels, self._edge_labels) | |||
| kernel = self._kernel_do(g1, g2) | |||
| return kernel | |||
| return kernel | |||
| def _kernel_do(self, g1, g2): | |||
| """Compute marginalized graph kernel between 2 graphs. | |||
| Parameters | |||
| ---------- | |||
| g1, g2 : NetworkX graphs | |||
| 2 graphs between which the kernel is computed. | |||
| Return | |||
| ------ | |||
| kernel : float | |||
| @@ -204,10 +190,10 @@ class Marginalized(GraphKernel): | |||
| # (uniform distribution over |G|) | |||
| p_init_G1 = 1 / num_nodes_G1 | |||
| p_init_G2 = 1 / num_nodes_G2 | |||
| q = self._p_quit * self._p_quit | |||
| r1 = q | |||
| # # initial R_inf | |||
| # # matrix to save all the R_inf for all pairs of nodes | |||
| # R_inf = np.zeros([num_nodes_G1, num_nodes_G2]) | |||
| @@ -229,7 +215,7 @@ class Marginalized(GraphKernel): | |||
| # neighbor_n2 = g2[node2[0]] | |||
| # if len(neighbor_n2) > 0: | |||
| # p_trans_n2 = (1 - p_quit) / len(neighbor_n2) | |||
| # | |||
| # | |||
| # for neighbor1 in neighbor_n1: | |||
| # for neighbor2 in neighbor_n2: | |||
| # t = p_trans_n1 * p_trans_n2 * \ | |||
| @@ -238,7 +224,7 @@ class Marginalized(GraphKernel): | |||
| # deltakernel( | |||
| # neighbor_n1[neighbor1][edge_label], | |||
| # neighbor_n2[neighbor2][edge_label]) | |||
| # | |||
| # | |||
| # R_inf_new[node1[0]][node2[0]] += t * R_inf[neighbor1][ | |||
| # neighbor2] # ref [1] equation (8) | |||
| # R_inf[:] = R_inf_new | |||
| @@ -249,8 +235,8 @@ class Marginalized(GraphKernel): | |||
| # s = p_init_G1 * p_init_G2 * deltakernel( | |||
| # node1[1][node_label], node2[1][node_label]) | |||
| # kernel += s * R_inf[node1[0]][node2[0]] # ref [1] equation (6) | |||
| R_inf = {} # dict to save all the R_inf for all pairs of nodes | |||
| # initial R_inf, the 1st iteration. | |||
| for node1 in g1.nodes(): | |||
| @@ -266,7 +252,7 @@ class Marginalized(GraphKernel): | |||
| R_inf[(node1, node2)] = self._p_quit | |||
| else: | |||
| R_inf[(node1, node2)] = 1 | |||
| # compute all transition probability first. | |||
| t_dict = {} | |||
| if self._n_iteration > 1: | |||
| @@ -287,11 +273,11 @@ class Marginalized(GraphKernel): | |||
| p_trans_n1 * p_trans_n2 * \ | |||
| deltakernel(tuple(g1.nodes[neighbor1][nl] for nl in self._node_labels), tuple(g2.nodes[neighbor2][nl] for nl in self._node_labels)) * \ | |||
| deltakernel(tuple(neighbor_n1[neighbor1][el] for el in self._edge_labels), tuple(neighbor_n2[neighbor2][el] for el in self._edge_labels)) | |||
| # Compute R_inf with a simple interative method | |||
| for i in range(2, self._n_iteration + 1): | |||
| R_inf_old = R_inf.copy() | |||
| # Compute R_inf for each pair of nodes | |||
| for node1 in g1.nodes(): | |||
| neighbor_n1 = g1[node1] | |||
| @@ -301,32 +287,32 @@ class Marginalized(GraphKernel): | |||
| if len(neighbor_n1) > 0: | |||
| for node2 in g2.nodes(): | |||
| neighbor_n2 = g2[node2] | |||
| if len(neighbor_n2) > 0: | |||
| if len(neighbor_n2) > 0: | |||
| R_inf[(node1, node2)] = r1 | |||
| for neighbor1 in neighbor_n1: | |||
| for neighbor2 in neighbor_n2: | |||
| R_inf[(node1, node2)] += \ | |||
| (t_dict[(node1, node2, neighbor1, neighbor2)] * \ | |||
| R_inf_old[(neighbor1, neighbor2)]) # ref [1] equation (8) | |||
| # add elements of R_inf up and compute kernel. | |||
| for (n1, n2), value in R_inf.items(): | |||
| s = p_init_G1 * p_init_G2 * deltakernel(tuple(g1.nodes[n1][nl] for nl in self._node_labels), tuple(g2.nodes[n2][nl] for nl in self._node_labels)) | |||
| kernel += s * value # ref [1] equation (6) | |||
| return kernel | |||
| def _wrapper_kernel_do(self, itr): | |||
| i = itr[0] | |||
| j = itr[1] | |||
| return i, j, self._kernel_do(G_gn[i], G_gn[j]) | |||
| def _wrapper_untotter(self, i): | |||
| return i, untotterTransformation(self._graphs[i], self._node_labels, self._edge_labels) # @todo: this may not work. | |||
| def _add_dummy_labels(self, Gn): | |||
| if len(self._node_labels) == 0 or (len(self._node_labels) == 1 and self._node_labels[0] == SpecialLabel.DUMMY): | |||
| for i in range(len(Gn)): | |||
| @@ -5,15 +5,15 @@ Created on Fri Apr 10 18:33:13 2020 | |||
| @author: ljia | |||
| @references: | |||
| @references: | |||
| [1] Liva Ralaivola, Sanjay J Swamidass, Hiroto Saigo, and Pierre | |||
| Baldi. Graph kernels for chemical informatics. Neural networks, | |||
| [1] Liva Ralaivola, Sanjay J Swamidass, Hiroto Saigo, and Pierre | |||
| Baldi. Graph kernels for chemical informatics. Neural networks, | |||
| 18(8):1093–1110, 2005. | |||
| """ | |||
| import sys | |||
| from multiprocessing import Pool | |||
| from tqdm import tqdm | |||
| from gklearn.utils import get_iters | |||
| import numpy as np | |||
| import networkx as nx | |||
| from collections import Counter | |||
| @@ -25,7 +25,7 @@ from gklearn.utils import Trie | |||
| class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| def __init__(self, **kwargs): | |||
| GraphKernel.__init__(self) | |||
| self._node_labels = kwargs.get('node_labels', []) | |||
| @@ -38,16 +38,14 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| def _compute_gm_series(self): | |||
| self._add_dummy_labels(self._graphs) | |||
| from itertools import combinations_with_replacement | |||
| itr_kernel = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
| if self._verbose >= 2: | |||
| iterator_ps = tqdm(range(0, len(self._graphs)), desc='getting paths', file=sys.stdout) | |||
| iterator_kernel = tqdm(itr_kernel, desc='Computing kernels', file=sys.stdout) | |||
| else: | |||
| iterator_ps = range(0, len(self._graphs)) | |||
| iterator_kernel = itr_kernel | |||
| itr_kernel = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
| iterator_ps = get_iters(range(0, len(self._graphs)), desc='getting paths', file=sys.stdout, length=len(self._graphs), verbose=(self._verbose >= 2)) | |||
| len_itr = int(len(self._graphs) * (len(self._graphs) + 1) / 2) | |||
| iterator_kernel = get_iters(itr_kernel, desc='Computing kernels', | |||
| file=sys.stdout, length=len_itr, verbose=(self._verbose >= 2)) | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| if self._compute_method == 'trie': | |||
| @@ -62,13 +60,13 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| kernel = self._kernel_do_naive(all_paths[i], all_paths[j]) | |||
| gram_matrix[i][j] = kernel | |||
| gram_matrix[j][i] = kernel | |||
| return gram_matrix | |||
| def _compute_gm_imap_unordered(self): | |||
| self._add_dummy_labels(self._graphs) | |||
| # get all paths of all graphs before computing kernels to save time, | |||
| # but this may cost a lot of memory for large datasets. | |||
| pool = Pool(self._n_jobs) | |||
| @@ -80,23 +78,21 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| all_paths = [[] for _ in range(len(self._graphs))] | |||
| if self._compute_method == 'trie' and self._k_func is not None: | |||
| get_ps_fun = self._wrapper_find_all_path_as_trie | |||
| elif self._compute_method != 'trie' and self._k_func is not None: | |||
| get_ps_fun = partial(self._wrapper_find_all_paths_until_length, True) | |||
| else: | |||
| get_ps_fun = partial(self._wrapper_find_all_paths_until_length, False) | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(pool.imap_unordered(get_ps_fun, itr, chunksize), | |||
| desc='getting paths', file=sys.stdout) | |||
| elif self._compute_method != 'trie' and self._k_func is not None: | |||
| get_ps_fun = partial(self._wrapper_find_all_paths_until_length, True) | |||
| else: | |||
| iterator = pool.imap_unordered(get_ps_fun, itr, chunksize) | |||
| get_ps_fun = partial(self._wrapper_find_all_paths_until_length, False) | |||
| iterator = get_iters(pool.imap_unordered(get_ps_fun, itr, chunksize), | |||
| desc='getting paths', file=sys.stdout, | |||
| length=len(self._graphs), verbose=(self._verbose >= 2)) | |||
| for i, ps in iterator: | |||
| all_paths[i] = ps | |||
| pool.close() | |||
| pool.join() | |||
| # compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| if self._compute_method == 'trie' and self._k_func is not None: | |||
| def init_worker(trie_toshare): | |||
| global G_trie | |||
| @@ -106,28 +102,24 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| def init_worker(plist_toshare): | |||
| global G_plist | |||
| G_plist = plist_toshare | |||
| do_fun = self._wrapper_kernel_do_naive | |||
| do_fun = self._wrapper_kernel_do_naive | |||
| else: | |||
| def init_worker(plist_toshare): | |||
| global G_plist | |||
| G_plist = plist_toshare | |||
| do_fun = self._wrapper_kernel_do_kernelless # @todo: what is this? | |||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
| glbv=(all_paths,), n_jobs=self._n_jobs, verbose=self._verbose) | |||
| do_fun = self._wrapper_kernel_do_kernelless # @todo: what is this? | |||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
| glbv=(all_paths,), n_jobs=self._n_jobs, verbose=self._verbose) | |||
| return gram_matrix | |||
| def _compute_kernel_list_series(self, g1, g_list): | |||
| self._add_dummy_labels(g_list + [g1]) | |||
| if self._verbose >= 2: | |||
| iterator_ps = tqdm(g_list, desc='getting paths', file=sys.stdout) | |||
| iterator_kernel = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout) | |||
| else: | |||
| iterator_ps = g_list | |||
| iterator_kernel = range(len(g_list)) | |||
| iterator_ps = get_iters(g_list, desc='getting paths', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
| iterator_kernel = get_iters(range(len(g_list)), desc='Computing kernels', file=sys.stdout, length=len(g_list), verbose=(self._verbose >= 2)) | |||
| kernel_list = [None] * len(g_list) | |||
| if self._compute_method == 'trie': | |||
| @@ -142,13 +134,13 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| for i in iterator_kernel: | |||
| kernel = self._kernel_do_naive(paths_g1, paths_g_list[i]) | |||
| kernel_list[i] = kernel | |||
| return kernel_list | |||
| def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
| self._add_dummy_labels(g_list + [g1]) | |||
| # get all paths of all graphs before computing kernels to save time, | |||
| # but this may cost a lot of memory for large datasets. | |||
| pool = Pool(self._n_jobs) | |||
| @@ -162,48 +154,46 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| paths_g1 = self._find_all_path_as_trie(g1) | |||
| get_ps_fun = self._wrapper_find_all_path_as_trie | |||
| elif self._compute_method != 'trie' and self._k_func is not None: | |||
| paths_g1 = self._find_all_paths_until_length(g1) | |||
| get_ps_fun = partial(self._wrapper_find_all_paths_until_length, True) | |||
| paths_g1 = self._find_all_paths_until_length(g1) | |||
| get_ps_fun = partial(self._wrapper_find_all_paths_until_length, True) | |||
| else: | |||
| paths_g1 = self._find_all_paths_until_length(g1) | |||
| paths_g1 = self._find_all_paths_until_length(g1) | |||
| get_ps_fun = partial(self._wrapper_find_all_paths_until_length, False) | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(pool.imap_unordered(get_ps_fun, itr, chunksize), | |||
| desc='getting paths', file=sys.stdout) | |||
| else: | |||
| iterator = pool.imap_unordered(get_ps_fun, itr, chunksize) | |||
| iterator = get_iters(pool.imap_unordered(get_ps_fun, itr, chunksize), | |||
| desc='getting paths', file=sys.stdout, | |||
| length=len(g_list), verbose=(self._verbose >= 2)) | |||
| for i, ps in iterator: | |||
| paths_g_list[i] = ps | |||
| pool.close() | |||
| pool.join() | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| def init_worker(p1_toshare, plist_toshare): | |||
| global G_p1, G_plist | |||
| G_p1 = p1_toshare | |||
| G_plist = plist_toshare | |||
| do_fun = self._wrapper_kernel_list_do | |||
| def func_assign(result, var_to_assign): | |||
| def func_assign(result, var_to_assign): | |||
| var_to_assign[result[0]] = result[1] | |||
| itr = range(len(g_list)) | |||
| len_itr = len(g_list) | |||
| parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||
| init_worker=init_worker, glbv=(paths_g1, paths_g_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | |||
| return kernel_list | |||
| def _wrapper_kernel_list_do(self, itr): | |||
| if self._compute_method == 'trie' and self._k_func is not None: | |||
| return itr, self._kernel_do_trie(G_p1, G_plist[itr]) | |||
| elif self._compute_method != 'trie' and self._k_func is not None: | |||
| return itr, self._kernel_do_naive(G_p1, G_plist[itr]) | |||
| return itr, self._kernel_do_naive(G_p1, G_plist[itr]) | |||
| else: | |||
| return itr, self._kernel_do_kernelless(G_p1, G_plist[itr]) | |||
| def _compute_single_kernel_series(self, g1, g2): | |||
| self._add_dummy_labels([g1] + [g2]) | |||
| if self._compute_method == 'trie': | |||
| @@ -214,32 +204,32 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| paths_g1 = self._find_all_paths_until_length(g1) | |||
| paths_g2 = self._find_all_paths_until_length(g2) | |||
| kernel = self._kernel_do_naive(paths_g1, paths_g2) | |||
| return kernel | |||
| return kernel | |||
| def _kernel_do_trie(self, trie1, trie2): | |||
| """Compute path graph kernels up to depth d between 2 graphs using trie. | |||
| Parameters | |||
| ---------- | |||
| trie1, trie2 : list | |||
| Tries that contains all paths in 2 graphs. | |||
| k_func : function | |||
| A kernel function applied using different notions of fingerprint | |||
| A kernel function applied using different notions of fingerprint | |||
| similarity. | |||
| Return | |||
| ------ | |||
| kernel : float | |||
| Path kernel up to h between 2 graphs. | |||
| """ | |||
| if self._k_func == 'tanimoto': | |||
| # traverse all paths in graph1 and search them in graph2. Deep-first | |||
| if self._k_func == 'tanimoto': | |||
| # traverse all paths in graph1 and search them in graph2. Deep-first | |||
| # search is applied. | |||
| def traverseTrie1t(root, trie2, setlist, pcurrent=[]): | |||
| def traverseTrie1t(root, trie2, setlist, pcurrent=[]): # @todo: no need to use value (# of occurrence of paths) in this case. | |||
| for key, node in root['children'].items(): | |||
| pcurrent.append(key) | |||
| if node['isEndOfWord']: | |||
| if node['isEndOfWord']: | |||
| setlist[1] += 1 | |||
| count2 = trie2.searchWord(pcurrent) | |||
| if count2 != 0: | |||
| @@ -250,17 +240,17 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| del pcurrent[-1] | |||
| if pcurrent != []: | |||
| del pcurrent[-1] | |||
| # traverse all paths in graph2 and find out those that are not in | |||
| # graph1. Deep-first search is applied. | |||
| # traverse all paths in graph2 and find out those that are not in | |||
| # graph1. Deep-first search is applied. | |||
| def traverseTrie2t(root, trie1, setlist, pcurrent=[]): | |||
| for key, node in root['children'].items(): | |||
| pcurrent.append(key) | |||
| if node['isEndOfWord']: | |||
| # print(node['count']) | |||
| count1 = trie1.searchWord(pcurrent) | |||
| if count1 == 0: | |||
| if count1 == 0: | |||
| setlist[1] += 1 | |||
| if node['children'] != {}: | |||
| traverseTrie2t(node, trie1, setlist, pcurrent) | |||
| @@ -268,7 +258,7 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| del pcurrent[-1] | |||
| if pcurrent != []: | |||
| del pcurrent[-1] | |||
| setlist = [0, 0] # intersection and union of path sets of g1, g2. | |||
| # print(trie1.root) | |||
| # print(trie2.root) | |||
| @@ -277,9 +267,9 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| traverseTrie2t(trie2.root, trie1, setlist) | |||
| # print(setlist) | |||
| kernel = setlist[0] / setlist[1] | |||
| elif self._k_func == 'MinMax': # MinMax kernel | |||
| # traverse all paths in graph1 and search them in graph2. Deep-first | |||
| elif self._k_func == 'MinMax': # MinMax kernel | |||
| # traverse all paths in graph1 and search them in graph2. Deep-first | |||
| # search is applied. | |||
| def traverseTrie1m(root, trie2, sumlist, pcurrent=[]): | |||
| for key, node in root['children'].items(): | |||
| @@ -296,16 +286,16 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| del pcurrent[-1] | |||
| if pcurrent != []: | |||
| del pcurrent[-1] | |||
| # traverse all paths in graph2 and find out those that are not in | |||
| # graph1. Deep-first search is applied. | |||
| # traverse all paths in graph2 and find out those that are not in | |||
| # graph1. Deep-first search is applied. | |||
| def traverseTrie2m(root, trie1, sumlist, pcurrent=[]): | |||
| for key, node in root['children'].items(): | |||
| pcurrent.append(key) | |||
| if node['isEndOfWord']: | |||
| if node['isEndOfWord']: | |||
| # print(node['count']) | |||
| count1 = trie1.searchWord(pcurrent) | |||
| if count1 == 0: | |||
| if count1 == 0: | |||
| sumlist[1] += node['count'] | |||
| if node['children'] != {}: | |||
| traverseTrie2m(node, trie1, sumlist, pcurrent) | |||
| @@ -313,7 +303,7 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| del pcurrent[-1] | |||
| if pcurrent != []: | |||
| del pcurrent[-1] | |||
| sumlist = [0, 0] # sum of mins and sum of maxs | |||
| # print(trie1.root) | |||
| # print(trie2.root) | |||
| @@ -324,37 +314,37 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| kernel = sumlist[0] / sumlist[1] | |||
| else: | |||
| raise Exception('The given "k_func" cannot be recognized. Possible choices include: "tanimoto", "MinMax".') | |||
| return kernel | |||
| def _wrapper_kernel_do_trie(self, itr): | |||
| i = itr[0] | |||
| j = itr[1] | |||
| return i, j, self._kernel_do_trie(G_trie[i], G_trie[j]) | |||
| def _kernel_do_naive(self, paths1, paths2): | |||
| """Compute path graph kernels up to depth d between 2 graphs naively. | |||
| Parameters | |||
| ---------- | |||
| paths_list : list of list | |||
| List of list of paths in all graphs, where for unlabeled graphs, each | |||
| path is represented by a list of nodes; while for labeled graphs, each | |||
| path is represented by a string consists of labels of nodes and/or | |||
| List of list of paths in all graphs, where for unlabeled graphs, each | |||
| path is represented by a list of nodes; while for labeled graphs, each | |||
| path is represented by a string consists of labels of nodes and/or | |||
| edges on that path. | |||
| k_func : function | |||
| A kernel function applied using different notions of fingerprint | |||
| A kernel function applied using different notions of fingerprint | |||
| similarity. | |||
| Return | |||
| ------ | |||
| kernel : float | |||
| Path kernel up to h between 2 graphs. | |||
| """ | |||
| all_paths = list(set(paths1 + paths2)) | |||
| if self._k_func == 'tanimoto': | |||
| length_union = len(set(paths1 + paths2)) | |||
| kernel = (len(set(paths1)) + len(set(paths2)) - | |||
| @@ -363,7 +353,7 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| # vector2 = [(1 if path in paths2 else 0) for path in all_paths] | |||
| # kernel_uv = np.dot(vector1, vector2) | |||
| # kernel = kernel_uv / (len(set(paths1)) + len(set(paths2)) - kernel_uv) | |||
| elif self._k_func == 'MinMax': # MinMax kernel | |||
| path_count1 = Counter(paths1) | |||
| path_count2 = Counter(paths2) | |||
| @@ -373,7 +363,7 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| for key in all_paths] | |||
| kernel = np.sum(np.minimum(vector1, vector2)) / \ | |||
| np.sum(np.maximum(vector1, vector2)) | |||
| elif self._k_func is None: # no sub-kernel used; compare paths directly. | |||
| path_count1 = Counter(paths1) | |||
| path_count2 = Counter(paths2) | |||
| @@ -382,27 +372,27 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| vector2 = [(path_count2[key] if (key in path_count2.keys()) else 0) | |||
| for key in all_paths] | |||
| kernel = np.dot(vector1, vector2) | |||
| else: | |||
| raise Exception('The given "k_func" cannot be recognized. Possible choices include: "tanimoto", "MinMax" and None.') | |||
| return kernel | |||
| def _wrapper_kernel_do_naive(self, itr): | |||
| i = itr[0] | |||
| j = itr[1] | |||
| return i, j, self._kernel_do_naive(G_plist[i], G_plist[j]) | |||
| def _find_all_path_as_trie(self, G): | |||
| # all_path = find_all_paths_until_length(G, length, ds_attrs, | |||
| # all_path = find_all_paths_until_length(G, length, ds_attrs, | |||
| # node_label=node_label, | |||
| # edge_label=edge_label) | |||
| # ptrie = Trie() | |||
| # for path in all_path: | |||
| # ptrie.insertWord(path) | |||
| # ptrie = Trie() | |||
| # path_l = [[n] for n in G.nodes] # paths of length l | |||
| # path_l_str = paths2labelseqs(path_l, G, ds_attrs, node_label, edge_label) | |||
| @@ -421,15 +411,15 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| # path_l_str = paths2labelseqs(path_l, G, ds_attrs, node_label, edge_label) | |||
| # for p in path_l_str: | |||
| # ptrie.insertWord(p) | |||
| # | |||
| # | |||
| # print(time.time() - time1) | |||
| # print(ptrie.root) | |||
| # print() | |||
| # traverse all paths up to length h in a graph and construct a trie with | |||
| # them. Deep-first search is applied. Notice the reverse of each path is | |||
| # also stored to the trie. | |||
| # traverse all paths up to length h in a graph and construct a trie with | |||
| # them. Deep-first search is applied. Notice the reverse of each path is | |||
| # also stored to the trie. | |||
| def traverseGraph(root, ptrie, G, pcurrent=[]): | |||
| if len(pcurrent) < self._depth + 1: | |||
| for neighbor in G[root]: | |||
| @@ -439,8 +429,8 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| ptrie.insertWord(plstr[0]) | |||
| traverseGraph(neighbor, ptrie, G, pcurrent) | |||
| del pcurrent[-1] | |||
| ptrie = Trie() | |||
| path_l = [[n] for n in G.nodes] # paths of length l | |||
| path_l_str = self._paths2labelseqs(path_l, G) | |||
| @@ -448,18 +438,18 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| ptrie.insertWord(p) | |||
| for n in G.nodes: | |||
| traverseGraph(n, ptrie, G, pcurrent=[n]) | |||
| # def traverseGraph(root, all_paths, length, G, ds_attrs, node_label, edge_label, | |||
| # pcurrent=[]): | |||
| # if len(pcurrent) < length + 1: | |||
| # for neighbor in G[root]: | |||
| # if neighbor not in pcurrent: | |||
| # pcurrent.append(neighbor) | |||
| # plstr = paths2labelseqs([pcurrent], G, ds_attrs, | |||
| # plstr = paths2labelseqs([pcurrent], G, ds_attrs, | |||
| # node_label, edge_label) | |||
| # all_paths.append(pcurrent[:]) | |||
| # traverseGraph(neighbor, all_paths, length, G, ds_attrs, | |||
| # traverseGraph(neighbor, all_paths, length, G, ds_attrs, | |||
| # node_label, edge_label, pcurrent) | |||
| # del pcurrent[-1] | |||
| # | |||
| @@ -470,24 +460,24 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| ## for p in path_l_str: | |||
| ## ptrie.insertWord(p) | |||
| # for n in G.nodes: | |||
| # traverseGraph(n, all_paths, length, G, ds_attrs, node_label, edge_label, | |||
| # traverseGraph(n, all_paths, length, G, ds_attrs, node_label, edge_label, | |||
| # pcurrent=[n]) | |||
| # print(ptrie.root) | |||
| return ptrie | |||
| def _wrapper_find_all_path_as_trie(self, itr_item): | |||
| g = itr_item[0] | |||
| i = itr_item[1] | |||
| return i, self._find_all_path_as_trie(g) | |||
| # @todo: (can be removed maybe) this method find paths repetively, it could be faster. | |||
| def _find_all_paths_until_length(self, G, tolabelseqs=True): | |||
| """Find all paths no longer than a certain maximum length in a graph. A | |||
| """Find all paths no longer than a certain maximum length in a graph. A | |||
| recursive depth first search is applied. | |||
| Parameters | |||
| ---------- | |||
| G : NetworkX graphs | |||
| @@ -500,13 +490,13 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| Node attribute used as label. The default node label is atom. | |||
| edge_label : string | |||
| Edge attribute used as label. The default edge label is bond_type. | |||
| Return | |||
| ------ | |||
| path : list | |||
| List of paths retrieved, where for unlabeled graphs, each path is | |||
| represented by a list of nodes; while for labeled graphs, each path is | |||
| represented by a list of strings consists of labels of nodes and/or | |||
| List of paths retrieved, where for unlabeled graphs, each path is | |||
| represented by a list of nodes; while for labeled graphs, each path is | |||
| represented by a list of strings consists of labels of nodes and/or | |||
| edges on that path. | |||
| """ | |||
| # path_l = [tuple([n]) for n in G.nodes] # paths of length l | |||
| @@ -519,10 +509,10 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| # tmp = path + (neighbor, ) | |||
| # if tuple(tmp[::-1]) not in path_l_new: | |||
| # path_l_new.append(tuple(tmp)) | |||
| # all_paths += path_l_new | |||
| # path_l = path_l_new[:] | |||
| path_l = [[n] for n in G.nodes] # paths of length l | |||
| all_paths = [p.copy() for p in path_l] | |||
| for l in range(1, self._depth + 1): | |||
| @@ -533,28 +523,28 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| tmp = path + [neighbor] | |||
| # if tmp[::-1] not in path_lplus1: | |||
| path_lplus1.append(tmp) | |||
| all_paths += path_lplus1 | |||
| path_l = [p.copy() for p in path_lplus1] | |||
| # for i in range(0, self._depth + 1): | |||
| # new_paths = find_all_paths(G, i) | |||
| # if new_paths == []: | |||
| # break | |||
| # all_paths.extend(new_paths) | |||
| # consider labels | |||
| # print(paths2labelseqs(all_paths, G, ds_attrs, node_label, edge_label)) | |||
| # print() | |||
| return (self._paths2labelseqs(all_paths, G) if tolabelseqs else all_paths) | |||
| def _wrapper_find_all_paths_until_length(self, tolabelseqs, itr_item): | |||
| g = itr_item[0] | |||
| i = itr_item[1] | |||
| return i, self._find_all_paths_until_length(g, tolabelseqs=tolabelseqs) | |||
| def _paths2labelseqs(self, plist, G): | |||
| if len(self._node_labels) > 0: | |||
| if len(self._edge_labels) > 0: | |||
| @@ -589,8 +579,8 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
| else: | |||
| return [tuple(['0' for node in path]) for path in plist] | |||
| # return [tuple([len(path)]) for path in all_paths] | |||
| def _add_dummy_labels(self, Gn): | |||
| if self._k_func is not None: | |||
| if len(self._node_labels) == 0 or (len(self._node_labels) == 1 and self._node_labels[0] == SpecialLabel.DUMMY): | |||
| @@ -15,7 +15,7 @@ import sys | |||
| from itertools import product | |||
| # from functools import partial | |||
| from multiprocessing import Pool | |||
| from tqdm import tqdm | |||
| from gklearn.utils import get_iters | |||
| import numpy as np | |||
| import networkx as nx | |||
| from gklearn.utils.parallel import parallel_gm, parallel_me | |||
| @@ -38,10 +38,7 @@ class ShortestPath(GraphKernel): | |||
| def _compute_gm_series(self): | |||
| self._all_graphs_have_edges(self._graphs) | |||
| # get shortest path graph of each graph. | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(self._graphs, desc='getting sp graphs', file=sys.stdout) | |||
| else: | |||
| iterator = self._graphs | |||
| iterator = get_iters(self._graphs, desc='getting sp graphs', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
| self._graphs = [getSPGraph(g, edge_weight=self._edge_weight) for g in iterator] | |||
| # compute Gram matrix. | |||
| @@ -49,10 +46,9 @@ class ShortestPath(GraphKernel): | |||
| from itertools import combinations_with_replacement | |||
| itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout) | |||
| else: | |||
| iterator = itr | |||
| len_itr = int(len(self._graphs) * (len(self._graphs) + 1) / 2) | |||
| iterator = get_iters(itr, desc='Computing kernels', | |||
| length=len_itr, file=sys.stdout,verbose=(self._verbose >= 2)) | |||
| for i, j in iterator: | |||
| kernel = self._sp_do(self._graphs[i], self._graphs[j]) | |||
| gram_matrix[i][j] = kernel | |||
| @@ -71,11 +67,9 @@ class ShortestPath(GraphKernel): | |||
| chunksize = int(len(self._graphs) / self._n_jobs) + 1 | |||
| else: | |||
| chunksize = 100 | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(pool.imap_unordered(get_sp_graphs_fun, itr, chunksize), | |||
| desc='getting sp graphs', file=sys.stdout) | |||
| else: | |||
| iterator = pool.imap_unordered(get_sp_graphs_fun, itr, chunksize) | |||
| iterator = get_iters(pool.imap_unordered(get_sp_graphs_fun, itr, chunksize), | |||
| desc='getting sp graphs', file=sys.stdout, | |||
| length=len(self._graphs), verbose=(self._verbose >= 2)) | |||
| for i, g in iterator: | |||
| self._graphs[i] = g | |||
| pool.close() | |||
| @@ -98,18 +92,12 @@ class ShortestPath(GraphKernel): | |||
| self._all_graphs_have_edges([g1] + g_list) | |||
| # get shortest path graphs of g1 and each graph in g_list. | |||
| g1 = getSPGraph(g1, edge_weight=self._edge_weight) | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(g_list, desc='getting sp graphs', file=sys.stdout) | |||
| else: | |||
| iterator = g_list | |||
| iterator = get_iters(g_list, desc='getting sp graphs', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
| g_list = [getSPGraph(g, edge_weight=self._edge_weight) for g in iterator] | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout) | |||
| else: | |||
| iterator = range(len(g_list)) | |||
| iterator = get_iters(range(len(g_list)), desc='Computing kernels', file=sys.stdout, length=len(g_list), verbose=(self._verbose >= 2)) | |||
| for i in iterator: | |||
| kernel = self._sp_do(g1, g_list[i]) | |||
| kernel_list[i] = kernel | |||
| @@ -128,11 +116,9 @@ class ShortestPath(GraphKernel): | |||
| chunksize = int(len(g_list) / self._n_jobs) + 1 | |||
| else: | |||
| chunksize = 100 | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(pool.imap_unordered(get_sp_graphs_fun, itr, chunksize), | |||
| desc='getting sp graphs', file=sys.stdout) | |||
| else: | |||
| iterator = pool.imap_unordered(get_sp_graphs_fun, itr, chunksize) | |||
| iterator = get_iters(pool.imap_unordered(get_sp_graphs_fun, itr, chunksize), | |||
| desc='getting sp graphs', file=sys.stdout, | |||
| length=len(g_list), verbose=(self._verbose >= 2)) | |||
| for i, g in iterator: | |||
| g_list[i] = g | |||
| pool.close() | |||
| @@ -5,13 +5,13 @@ Created on Thu Aug 20 16:12:45 2020 | |||
| @author: ljia | |||
| @references: | |||
| @references: | |||
| [1] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph kernels. Journal of Machine Learning Research, 11(Apr):1201–1242, 2010. | |||
| """ | |||
| import sys | |||
| from tqdm import tqdm | |||
| from gklearn.utils import get_iters | |||
| import numpy as np | |||
| import networkx as nx | |||
| from scipy.sparse import kron | |||
| @@ -20,12 +20,12 @@ from gklearn.kernels import RandomWalkMeta | |||
| class SpectralDecomposition(RandomWalkMeta): | |||
| def __init__(self, **kwargs): | |||
| super().__init__(**kwargs) | |||
| self._sub_kernel = kwargs.get('sub_kernel', None) | |||
| def _compute_gm_series(self): | |||
| self._check_edge_weight(self._graphs, self._verbose) | |||
| @@ -33,18 +33,15 @@ class SpectralDecomposition(RandomWalkMeta): | |||
| if self._verbose >= 2: | |||
| import warnings | |||
| warnings.warn('All labels are ignored. Only works for undirected graphs.') | |||
| # compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| if self._q is None: | |||
| # precompute the spectral decomposition of each graph. | |||
| P_list = [] | |||
| D_list = [] | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(self._graphs, desc='spectral decompose', file=sys.stdout) | |||
| else: | |||
| iterator = self._graphs | |||
| iterator = get_iters(self._graphs, desc='spectral decompose', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
| for G in iterator: | |||
| # don't normalize adjacency matrices if q is a uniform vector. Note | |||
| # A actually is the transpose of the adjacency matrix. | |||
| @@ -60,42 +57,37 @@ class SpectralDecomposition(RandomWalkMeta): | |||
| from itertools import combinations_with_replacement | |||
| itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout) | |||
| else: | |||
| iterator = itr | |||
| len_itr = int(len(self._graphs) * (len(self._graphs) + 1) / 2) | |||
| iterator = get_iters(itr, desc='Computing kernels', file=sys.stdout, length=len_itr, verbose=(self._verbose >= 2)) | |||
| for i, j in iterator: | |||
| kernel = self._kernel_do(q_T_list[i], q_T_list[j], P_list[i], P_list[j], D_list[i], D_list[j], self._weight, self._sub_kernel) | |||
| gram_matrix[i][j] = kernel | |||
| gram_matrix[j][i] = kernel | |||
| else: # @todo | |||
| pass | |||
| else: # @todo | |||
| pass | |||
| return gram_matrix | |||
| def _compute_gm_imap_unordered(self): | |||
| self._check_edge_weight(self._graphs, self._verbose) | |||
| self._check_graphs(self._graphs) | |||
| if self._verbose >= 2: | |||
| import warnings | |||
| warnings.warn('All labels are ignored. Only works for undirected graphs.') | |||
| # compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| if self._q is None: | |||
| # precompute the spectral decomposition of each graph. | |||
| P_list = [] | |||
| D_list = [] | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(self._graphs, desc='spectral decompose', file=sys.stdout) | |||
| else: | |||
| iterator = self._graphs | |||
| iterator = get_iters(self._graphs, desc='spectral decompose', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
| for G in iterator: | |||
| # don't normalize adjacency matrices if q is a uniform vector. Note | |||
| # A actually is the transpose of the adjacency matrix. | |||
| @@ -106,45 +98,42 @@ class SpectralDecomposition(RandomWalkMeta): | |||
| if self._p is None: # p is uniform distribution as default. | |||
| q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in self._graphs] # @todo: parallel? | |||
| def init_worker(q_T_list_toshare, P_list_toshare, D_list_toshare): | |||
| global G_q_T_list, G_P_list, G_D_list | |||
| G_q_T_list = q_T_list_toshare | |||
| G_P_list = P_list_toshare | |||
| G_D_list = D_list_toshare | |||
| do_fun = self._wrapper_kernel_do | |||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
| do_fun = self._wrapper_kernel_do | |||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
| glbv=(q_T_list, P_list, D_list), n_jobs=self._n_jobs, verbose=self._verbose) | |||
| else: # @todo | |||
| pass | |||
| else: # @todo | |||
| pass | |||
| return gram_matrix | |||
| def _compute_kernel_list_series(self, g1, g_list): | |||
| self._check_edge_weight(g_list + [g1], self._verbose) | |||
| self._check_graphs(g_list + [g1]) | |||
| if self._verbose >= 2: | |||
| import warnings | |||
| warnings.warn('All labels are ignored. Only works for undirected graphs.') | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| if self._q is None: | |||
| # precompute the spectral decomposition of each graph. | |||
| A1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() | |||
| D1, P1 = np.linalg.eig(A1) | |||
| P_list = [] | |||
| D_list = [] | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(g_list, desc='spectral decompose', file=sys.stdout) | |||
| else: | |||
| iterator = g_list | |||
| iterator = get_iters(g_list, desc='spectral decompose', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
| for G in iterator: | |||
| # don't normalize adjacency matrices if q is a uniform vector. Note | |||
| # A actually is the transpose of the adjacency matrix. | |||
| @@ -156,33 +145,30 @@ class SpectralDecomposition(RandomWalkMeta): | |||
| if self._p is None: # p is uniform distribution as default. | |||
| q_T1 = 1 / nx.number_of_nodes(g1) | |||
| q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in g_list] | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout) | |||
| else: | |||
| iterator = range(len(g_list)) | |||
| iterator = get_iters(range(len(g_list)), desc='Computing kernels', file=sys.stdout, length=len(g_list), verbose=(self._verbose >= 2)) | |||
| for i in iterator: | |||
| kernel = self._kernel_do(q_T1, q_T_list[i], P1, P_list[i], D1, D_list[i], self._weight, self._sub_kernel) | |||
| kernel_list[i] = kernel | |||
| else: # @todo | |||
| pass | |||
| else: # @todo | |||
| pass | |||
| return kernel_list | |||
| def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
| self._check_edge_weight(g_list + [g1], self._verbose) | |||
| self._check_graphs(g_list + [g1]) | |||
| if self._verbose >= 2: | |||
| import warnings | |||
| warnings.warn('All labels are ignored. Only works for undirected graphs.') | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| if self._q is None: | |||
| # precompute the spectral decomposition of each graph. | |||
| A1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() | |||
| @@ -204,7 +190,7 @@ class SpectralDecomposition(RandomWalkMeta): | |||
| if self._p is None: # p is uniform distribution as default. | |||
| q_T1 = 1 / nx.number_of_nodes(g1) | |||
| q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in g_list] # @todo: parallel? | |||
| def init_worker(q_T1_toshare, P1_toshare, D1_toshare, q_T_list_toshare, P_list_toshare, D_list_toshare): | |||
| global G_q_T1, G_P1, G_D1, G_q_T_list, G_P_list, G_D_list | |||
| G_q_T1 = q_T1_toshare | |||
| @@ -214,34 +200,34 @@ class SpectralDecomposition(RandomWalkMeta): | |||
| G_P_list = P_list_toshare | |||
| G_D_list = D_list_toshare | |||
| do_fun = self._wrapper_kernel_list_do | |||
| def func_assign(result, var_to_assign): | |||
| do_fun = self._wrapper_kernel_list_do | |||
| def func_assign(result, var_to_assign): | |||
| var_to_assign[result[0]] = result[1] | |||
| itr = range(len(g_list)) | |||
| len_itr = len(g_list) | |||
| parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||
| init_worker=init_worker, glbv=(q_T1, P1, D1, q_T_list, P_list, D_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | |||
| else: # @todo | |||
| pass | |||
| else: # @todo | |||
| pass | |||
| return kernel_list | |||
| def _wrapper_kernel_list_do(self, itr): | |||
| return itr, self._kernel_do(G_q_T1, G_q_T_list[itr], G_P1, G_P_list[itr], G_D1, G_D_list[itr], self._weight, self._sub_kernel) | |||
| def _compute_single_kernel_series(self, g1, g2): | |||
| self._check_edge_weight([g1] + [g2], self._verbose) | |||
| self._check_graphs([g1] + [g2]) | |||
| if self._verbose >= 2: | |||
| import warnings | |||
| warnings.warn('All labels are ignored. Only works for undirected graphs.') | |||
| if self._q is None: | |||
| # precompute the spectral decomposition of each graph. | |||
| A1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() | |||
| @@ -257,10 +243,10 @@ class SpectralDecomposition(RandomWalkMeta): | |||
| pass | |||
| else: # @todo | |||
| pass | |||
| return kernel | |||
| return kernel | |||
| def _kernel_do(self, q_T1, q_T2, P1, P2, D1, D2, weight, sub_kernel): | |||
| # use uniform distribution if there is no prior knowledge. | |||
| kl = kron(np.dot(q_T1, P1), np.dot(q_T2, P2)).todense() | |||
| @@ -276,7 +262,7 @@ class SpectralDecomposition(RandomWalkMeta): | |||
| kmiddle = np.linalg.inv(kmiddle) | |||
| return np.dot(np.dot(kl, kmiddle), kl.T)[0, 0] | |||
| def _wrapper_kernel_do(self, itr): | |||
| i = itr[0] | |||
| j = itr[1] | |||
| @@ -5,13 +5,13 @@ Created on Wed Aug 19 17:24:46 2020 | |||
| @author: ljia | |||
| @references: | |||
| @references: | |||
| [1] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph kernels. Journal of Machine Learning Research, 11(Apr):1201–1242, 2010. | |||
| """ | |||
| import sys | |||
| from tqdm import tqdm | |||
| from gklearn.utils import get_iters | |||
| import numpy as np | |||
| import networkx as nx | |||
| from control import dlyap | |||
| @@ -20,11 +20,11 @@ from gklearn.kernels import RandomWalkMeta | |||
| class SylvesterEquation(RandomWalkMeta): | |||
| def __init__(self, **kwargs): | |||
| super().__init__(**kwargs) | |||
| def _compute_gm_series(self): | |||
| self._check_edge_weight(self._graphs, self._verbose) | |||
| @@ -32,24 +32,21 @@ class SylvesterEquation(RandomWalkMeta): | |||
| if self._verbose >= 2: | |||
| import warnings | |||
| warnings.warn('All labels are ignored.') | |||
| lmda = self._weight | |||
| # compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| if self._q is None: | |||
| # don't normalize adjacency matrices if q is a uniform vector. Note | |||
| # A_wave_list actually contains the transposes of the adjacency matrices. | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(self._graphs, desc='compute adjacency matrices', file=sys.stdout) | |||
| else: | |||
| iterator = self._graphs | |||
| iterator = get_iters(self._graphs, desc='compute adjacency matrices', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
| A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] | |||
| # # normalized adjacency matrices | |||
| # A_wave_list = [] | |||
| # for G in tqdm(Gn, desc='compute adjacency matrices', file=sys.stdout): | |||
| # A_tilde = nx.adjacency_matrix(G, eweight).todense().transpose() | |||
| # A_tilde = nx.adjacency_matrix(G, eweight).todense().transpose() | |||
| # norm = A_tilde.sum(axis=0) | |||
| # norm[norm == 0] = 1 | |||
| # A_wave_list.append(A_tilde / norm) | |||
| @@ -57,119 +54,105 @@ class SylvesterEquation(RandomWalkMeta): | |||
| if self._p is None: # p is uniform distribution as default. | |||
| from itertools import combinations_with_replacement | |||
| itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout) | |||
| else: | |||
| iterator = itr | |||
| len_itr = int(len(self._graphs) * (len(self._graphs) + 1) / 2) | |||
| iterator = get_iters(itr, desc='Computing kernels', file=sys.stdout, length=len_itr, verbose=(self._verbose >= 2)) | |||
| for i, j in iterator: | |||
| kernel = self._kernel_do(A_wave_list[i], A_wave_list[j], lmda) | |||
| gram_matrix[i][j] = kernel | |||
| gram_matrix[j][i] = kernel | |||
| else: # @todo | |||
| pass | |||
| else: # @todo | |||
| pass | |||
| return gram_matrix | |||
| def _compute_gm_imap_unordered(self): | |||
| self._check_edge_weight(self._graphs, self._verbose) | |||
| self._check_graphs(self._graphs) | |||
| if self._verbose >= 2: | |||
| import warnings | |||
| warnings.warn('All labels are ignored.') | |||
| # compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| if self._q is None: | |||
| # don't normalize adjacency matrices if q is a uniform vector. Note | |||
| # A_wave_list actually contains the transposes of the adjacency matrices. | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(self._graphs, desc='compute adjacency matrices', file=sys.stdout) | |||
| else: | |||
| iterator = self._graphs | |||
| iterator = get_iters(self._graphs, desc='compute adjacency matrices', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
| A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] # @todo: parallel? | |||
| if self._p is None: # p is uniform distribution as default. | |||
| def init_worker(A_wave_list_toshare): | |||
| global G_A_wave_list | |||
| G_A_wave_list = A_wave_list_toshare | |||
| do_fun = self._wrapper_kernel_do | |||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
| glbv=(A_wave_list,), n_jobs=self._n_jobs, verbose=self._verbose) | |||
| else: # @todo | |||
| pass | |||
| else: # @todo | |||
| pass | |||
| return gram_matrix | |||
| def _compute_kernel_list_series(self, g1, g_list): | |||
| self._check_edge_weight(g_list + [g1], self._verbose) | |||
| self._check_graphs(g_list + [g1]) | |||
| if self._verbose >= 2: | |||
| import warnings | |||
| warnings.warn('All labels are ignored.') | |||
| lmda = self._weight | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| if self._q is None: | |||
| # don't normalize adjacency matrices if q is a uniform vector. Note | |||
| # A_wave_list actually contains the transposes of the adjacency matrices. | |||
| A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(g_list, desc='compute adjacency matrices', file=sys.stdout) | |||
| else: | |||
| iterator = g_list | |||
| iterator = get_iters(g_list, desc='compute adjacency matrices', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
| A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] | |||
| if self._p is None: # p is uniform distribution as default. | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout) | |||
| else: | |||
| iterator = range(len(g_list)) | |||
| iterator = get_iters(range(len(g_list)), desc='Computing kernels', file=sys.stdout, length=len(g_list), verbose=(self._verbose >= 2)) | |||
| for i in iterator: | |||
| kernel = self._kernel_do(A_wave_1, A_wave_list[i], lmda) | |||
| kernel_list[i] = kernel | |||
| else: # @todo | |||
| pass | |||
| else: # @todo | |||
| pass | |||
| return kernel_list | |||
| def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
| self._check_edge_weight(g_list + [g1], self._verbose) | |||
| self._check_graphs(g_list + [g1]) | |||
| if self._verbose >= 2: | |||
| import warnings | |||
| warnings.warn('All labels are ignored.') | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| if self._q is None: | |||
| # don't normalize adjacency matrices if q is a uniform vector. Note | |||
| # A_wave_list actually contains the transposes of the adjacency matrices. | |||
| A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(g_list, desc='compute adjacency matrices', file=sys.stdout) | |||
| else: | |||
| iterator = g_list | |||
| iterator = get_iters(g_list, desc='compute adjacency matrices', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
| A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] # @todo: parallel? | |||
| if self._p is None: # p is uniform distribution as default. | |||
| @@ -178,37 +161,37 @@ class SylvesterEquation(RandomWalkMeta): | |||
| G_A_wave_1 = A_wave_1_toshare | |||
| G_A_wave_list = A_wave_list_toshare | |||
| do_fun = self._wrapper_kernel_list_do | |||
| def func_assign(result, var_to_assign): | |||
| do_fun = self._wrapper_kernel_list_do | |||
| def func_assign(result, var_to_assign): | |||
| var_to_assign[result[0]] = result[1] | |||
| itr = range(len(g_list)) | |||
| len_itr = len(g_list) | |||
| parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||
| init_worker=init_worker, glbv=(A_wave_1, A_wave_list), method='imap_unordered', | |||
| init_worker=init_worker, glbv=(A_wave_1, A_wave_list), method='imap_unordered', | |||
| n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | |||
| else: # @todo | |||
| pass | |||
| else: # @todo | |||
| pass | |||
| return kernel_list | |||
| def _wrapper_kernel_list_do(self, itr): | |||
| return itr, self._kernel_do(G_A_wave_1, G_A_wave_list[itr], self._weight) | |||
| def _compute_single_kernel_series(self, g1, g2): | |||
| self._check_edge_weight([g1] + [g2], self._verbose) | |||
| self._check_graphs([g1] + [g2]) | |||
| if self._verbose >= 2: | |||
| import warnings | |||
| warnings.warn('All labels are ignored.') | |||
| lmda = self._weight | |||
| if self._q is None: | |||
| # don't normalize adjacency matrices if q is a uniform vector. Note | |||
| # A_wave_list actually contains the transposes of the adjacency matrices. | |||
| @@ -220,12 +203,12 @@ class SylvesterEquation(RandomWalkMeta): | |||
| pass | |||
| else: # @todo | |||
| pass | |||
| return kernel | |||
| return kernel | |||
| def _kernel_do(self, A_wave1, A_wave2, lmda): | |||
| S = lmda * A_wave2 | |||
| T_t = A_wave1 | |||
| # use uniform distribution if there is no prior knowledge. | |||
| @@ -237,8 +220,8 @@ class SylvesterEquation(RandomWalkMeta): | |||
| # use uniform distribution if there is no prior knowledge. | |||
| q_times = np.full((1, nb_pd), p_times_uni) | |||
| return np.dot(q_times, X) | |||
| def _wrapper_kernel_do(self, itr): | |||
| i = itr[0] | |||
| j = itr[1] | |||
| @@ -5,15 +5,15 @@ Created on Mon Apr 13 18:02:46 2020 | |||
| @author: ljia | |||
| @references: | |||
| @references: | |||
| [1] Gaüzère B, Brun L, Villemin D. Two new graphs kernels in | |||
| [1] Gaüzère B, Brun L, Villemin D. Two new graphs kernels in | |||
| chemoinformatics. Pattern Recognition Letters. 2012 Nov 1;33(15):2038-47. | |||
| """ | |||
| import sys | |||
| from multiprocessing import Pool | |||
| from tqdm import tqdm | |||
| from gklearn.utils import get_iters | |||
| import numpy as np | |||
| import networkx as nx | |||
| from collections import Counter | |||
| @@ -25,7 +25,7 @@ from gklearn.kernels import GraphKernel | |||
| class Treelet(GraphKernel): | |||
| def __init__(self, **kwargs): | |||
| GraphKernel.__init__(self) | |||
| self._node_labels = kwargs.get('node_labels', []) | |||
| @@ -38,38 +38,35 @@ class Treelet(GraphKernel): | |||
| def _compute_gm_series(self): | |||
| self._add_dummy_labels(self._graphs) | |||
| # get all canonical keys of all graphs before computing kernels to save | |||
| # get all canonical keys of all graphs before computing kernels to save | |||
| # time, but this may cost a lot of memory for large dataset. | |||
| canonkeys = [] | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(self._graphs, desc='getting canonkeys', file=sys.stdout) | |||
| else: | |||
| iterator = self._graphs | |||
| iterator = get_iters(self._graphs, desc='getting canonkeys', file=sys.stdout, | |||
| verbose=(self._verbose >= 2)) | |||
| for g in iterator: | |||
| canonkeys.append(self._get_canonkeys(g)) | |||
| # compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| from itertools import combinations_with_replacement | |||
| itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout) | |||
| else: | |||
| iterator = itr | |||
| len_itr = int(len(self._graphs) * (len(self._graphs) + 1) / 2) | |||
| iterator = get_iters(itr, desc='Computing kernels', file=sys.stdout, | |||
| length=len_itr, verbose=(self._verbose >= 2)) | |||
| for i, j in iterator: | |||
| kernel = self._kernel_do(canonkeys[i], canonkeys[j]) | |||
| gram_matrix[i][j] = kernel | |||
| gram_matrix[j][i] = kernel # @todo: no directed graph considered? | |||
| return gram_matrix | |||
| def _compute_gm_imap_unordered(self): | |||
| self._add_dummy_labels(self._graphs) | |||
| # get all canonical keys of all graphs before computing kernels to save | |||
| # get all canonical keys of all graphs before computing kernels to save | |||
| # time, but this may cost a lot of memory for large dataset. | |||
| pool = Pool(self._n_jobs) | |||
| itr = zip(self._graphs, range(0, len(self._graphs))) | |||
| @@ -79,60 +76,52 @@ class Treelet(GraphKernel): | |||
| chunksize = 100 | |||
| canonkeys = [[] for _ in range(len(self._graphs))] | |||
| get_fun = self._wrapper_get_canonkeys | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(pool.imap_unordered(get_fun, itr, chunksize), | |||
| desc='getting canonkeys', file=sys.stdout) | |||
| else: | |||
| iterator = pool.imap_unordered(get_fun, itr, chunksize) | |||
| iterator = get_iters(pool.imap_unordered(get_fun, itr, chunksize), | |||
| desc='getting canonkeys', file=sys.stdout, | |||
| length=len(self._graphs), verbose=(self._verbose >= 2)) | |||
| for i, ck in iterator: | |||
| canonkeys[i] = ck | |||
| pool.close() | |||
| pool.join() | |||
| # compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| def init_worker(canonkeys_toshare): | |||
| global G_canonkeys | |||
| G_canonkeys = canonkeys_toshare | |||
| do_fun = self._wrapper_kernel_do | |||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
| glbv=(canonkeys,), n_jobs=self._n_jobs, verbose=self._verbose) | |||
| return gram_matrix | |||
| def _compute_kernel_list_series(self, g1, g_list): | |||
| self._add_dummy_labels(g_list + [g1]) | |||
| # get all canonical keys of all graphs before computing kernels to save | |||
| # get all canonical keys of all graphs before computing kernels to save | |||
| # time, but this may cost a lot of memory for large dataset. | |||
| canonkeys_1 = self._get_canonkeys(g1) | |||
| canonkeys_list = [] | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(g_list, desc='getting canonkeys', file=sys.stdout) | |||
| else: | |||
| iterator = g_list | |||
| iterator = get_iters(g_list, desc='getting canonkeys', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
| for g in iterator: | |||
| canonkeys_list.append(self._get_canonkeys(g)) | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout) | |||
| else: | |||
| iterator = range(len(g_list)) | |||
| iterator = get_iters(range(len(g_list)), desc='Computing kernels', file=sys.stdout, length=len(g_list), verbose=(self._verbose >= 2)) | |||
| for i in iterator: | |||
| kernel = self._kernel_do(canonkeys_1, canonkeys_list[i]) | |||
| kernel_list[i] = kernel | |||
| return kernel_list | |||
| def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
| self._add_dummy_labels(g_list + [g1]) | |||
| # get all canonical keys of all graphs before computing kernels to save | |||
| # get all canonical keys of all graphs before computing kernels to save | |||
| # time, but this may cost a lot of memory for large dataset. | |||
| canonkeys_1 = self._get_canonkeys(g1) | |||
| canonkeys_list = [[] for _ in range(len(g_list))] | |||
| @@ -143,16 +132,14 @@ class Treelet(GraphKernel): | |||
| else: | |||
| chunksize = 100 | |||
| get_fun = self._wrapper_get_canonkeys | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(pool.imap_unordered(get_fun, itr, chunksize), | |||
| desc='getting canonkeys', file=sys.stdout) | |||
| else: | |||
| iterator = pool.imap_unordered(get_fun, itr, chunksize) | |||
| iterator = get_iters(pool.imap_unordered(get_fun, itr, chunksize), | |||
| desc='getting canonkeys', file=sys.stdout, | |||
| length=len(g_list), verbose=(self._verbose >= 2)) | |||
| for i, ck in iterator: | |||
| canonkeys_list[i] = ck | |||
| pool.close() | |||
| pool.join() | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| @@ -161,37 +148,37 @@ class Treelet(GraphKernel): | |||
| G_ck_1 = ck_1_toshare | |||
| G_ck_list = ck_list_toshare | |||
| do_fun = self._wrapper_kernel_list_do | |||
| def func_assign(result, var_to_assign): | |||
| def func_assign(result, var_to_assign): | |||
| var_to_assign[result[0]] = result[1] | |||
| itr = range(len(g_list)) | |||
| len_itr = len(g_list) | |||
| parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||
| init_worker=init_worker, glbv=(canonkeys_1, canonkeys_list), method='imap_unordered', | |||
| init_worker=init_worker, glbv=(canonkeys_1, canonkeys_list), method='imap_unordered', | |||
| n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | |||
| return kernel_list | |||
| def _wrapper_kernel_list_do(self, itr): | |||
| return itr, self._kernel_do(G_ck_1, G_ck_list[itr]) | |||
| def _compute_single_kernel_series(self, g1, g2): | |||
| self._add_dummy_labels([g1] + [g2]) | |||
| canonkeys_1 = self._get_canonkeys(g1) | |||
| canonkeys_2 = self._get_canonkeys(g2) | |||
| kernel = self._kernel_do(canonkeys_1, canonkeys_2) | |||
| return kernel | |||
| return kernel | |||
| def _kernel_do(self, canonkey1, canonkey2): | |||
| """Compute treelet graph kernel between 2 graphs. | |||
| Parameters | |||
| ---------- | |||
| canonkey1, canonkey2 : list | |||
| List of canonical keys in 2 graphs, where each key is represented by a string. | |||
| Return | |||
| ------ | |||
| kernel : float | |||
| @@ -199,38 +186,38 @@ class Treelet(GraphKernel): | |||
| """ | |||
| keys = set(canonkey1.keys()) & set(canonkey2.keys()) # find same canonical keys in both graphs | |||
| vector1 = np.array([(canonkey1[key] if (key in canonkey1.keys()) else 0) for key in keys]) | |||
| vector2 = np.array([(canonkey2[key] if (key in canonkey2.keys()) else 0) for key in keys]) | |||
| kernel = self._sub_kernel(vector1, vector2) | |||
| vector2 = np.array([(canonkey2[key] if (key in canonkey2.keys()) else 0) for key in keys]) | |||
| kernel = self._sub_kernel(vector1, vector2) | |||
| return kernel | |||
| def _wrapper_kernel_do(self, itr): | |||
| i = itr[0] | |||
| j = itr[1] | |||
| return i, j, self._kernel_do(G_canonkeys[i], G_canonkeys[j]) | |||
| def _get_canonkeys(self, G): | |||
| """Generate canonical keys of all treelets in a graph. | |||
| Parameters | |||
| ---------- | |||
| G : NetworkX graphs | |||
| The graph in which keys are generated. | |||
| Return | |||
| ------ | |||
| canonkey/canonkey_l : dict | |||
| For unlabeled graphs, canonkey is a dictionary which records amount of | |||
| every tree pattern. For labeled graphs, canonkey_l is one which keeps | |||
| For unlabeled graphs, canonkey is a dictionary which records amount of | |||
| every tree pattern. For labeled graphs, canonkey_l is one which keeps | |||
| track of amount of every treelet. | |||
| """ | |||
| patterns = {} # a dictionary which consists of lists of patterns for all graphlet. | |||
| canonkey = {} # canonical key, a dictionary which records amount of every tree pattern. | |||
| ### structural analysis ### | |||
| ### In this section, a list of patterns is generated for each graphlet, | |||
| ### where every pattern is represented by nodes ordered by Morgan's | |||
| ### In this section, a list of patterns is generated for each graphlet, | |||
| ### where every pattern is represented by nodes ordered by Morgan's | |||
| ### extended labeling. | |||
| # linear patterns | |||
| patterns['0'] = list(G.nodes()) | |||
| @@ -238,16 +225,16 @@ class Treelet(GraphKernel): | |||
| for i in range(1, 6): # for i in range(1, 6): | |||
| patterns[str(i)] = find_all_paths(G, i, self._ds_infos['directed']) | |||
| canonkey[str(i)] = len(patterns[str(i)]) | |||
| # n-star patterns | |||
| patterns['3star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 3] | |||
| patterns['4star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 4] | |||
| patterns['5star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 5] | |||
| patterns['5star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 5] | |||
| # n-star patterns | |||
| canonkey['6'] = len(patterns['3star']) | |||
| canonkey['8'] = len(patterns['4star']) | |||
| canonkey['d'] = len(patterns['5star']) | |||
| # pattern 7 | |||
| patterns['7'] = [] # the 1st line of Table 1 in Ref [1] | |||
| for pattern in patterns['3star']: | |||
| @@ -261,7 +248,7 @@ class Treelet(GraphKernel): | |||
| new_pattern = pattern_t + [neighborx] | |||
| patterns['7'].append(new_pattern) | |||
| canonkey['7'] = len(patterns['7']) | |||
| # pattern 11 | |||
| patterns['11'] = [] # the 4th line of Table 1 in Ref [1] | |||
| for pattern in patterns['4star']: | |||
| @@ -274,7 +261,7 @@ class Treelet(GraphKernel): | |||
| new_pattern = pattern_t + [neighborx] | |||
| patterns['11'].append(new_pattern) | |||
| canonkey['b'] = len(patterns['11']) | |||
| # pattern 12 | |||
| patterns['12'] = [] # the 5th line of Table 1 in Ref [1] | |||
| rootlist = [] # a list of root nodes, whose extended labels are 3 | |||
| @@ -294,7 +281,7 @@ class Treelet(GraphKernel): | |||
| # new_patterns = [ pattern + [neighborx1] + [neighborx2] for neighborx1 in G[pattern[i]] if neighborx1 != pattern[0] for neighborx2 in G[pattern[i]] if (neighborx1 > neighborx2 and neighborx2 != pattern[0]) ] | |||
| patterns['12'].append(new_pattern) | |||
| canonkey['c'] = int(len(patterns['12']) / 2) | |||
| # pattern 9 | |||
| patterns['9'] = [] # the 2nd line of Table 1 in Ref [1] | |||
| for pattern in patterns['3star']: | |||
| @@ -311,10 +298,10 @@ class Treelet(GraphKernel): | |||
| new_pattern = pattern_t + [neighborx1] + [neighborx2] | |||
| patterns['9'].append(new_pattern) | |||
| canonkey['9'] = len(patterns['9']) | |||
| # pattern 10 | |||
| patterns['10'] = [] # the 3rd line of Table 1 in Ref [1] | |||
| for pattern in patterns['3star']: | |||
| for pattern in patterns['3star']: | |||
| for i in range(1, len(pattern)): | |||
| if G.degree(pattern[i]) >= 2: | |||
| for neighborx in G[pattern[i]]: | |||
| @@ -324,20 +311,20 @@ class Treelet(GraphKernel): | |||
| new_patterns = [ pattern_t + [neighborx] + [neighborxx] for neighborxx in G[neighborx] if neighborxx != pattern[i] ] | |||
| patterns['10'].extend(new_patterns) | |||
| canonkey['a'] = len(patterns['10']) | |||
| ### labeling information ### | |||
| ### In this section, a list of canonical keys is generated for every | |||
| ### pattern obtained in the structural analysis section above, which is a | |||
| ### In this section, a list of canonical keys is generated for every | |||
| ### pattern obtained in the structural analysis section above, which is a | |||
| ### string corresponding to a unique treelet. A dictionary is built to keep | |||
| ### track of the amount of every treelet. | |||
| if len(self._node_labels) > 0 or len(self._edge_labels) > 0: | |||
| canonkey_l = {} # canonical key, a dictionary which keeps track of amount of every treelet. | |||
| # linear patterns | |||
| canonkey_t = Counter(get_mlti_dim_node_attrs(G, self._node_labels)) | |||
| for key in canonkey_t: | |||
| canonkey_l[('0', key)] = canonkey_t[key] | |||
| for i in range(1, 6): # for i in range(1, 6): | |||
| treelet = [] | |||
| for pattern in patterns[str(i)]: | |||
| @@ -349,7 +336,7 @@ class Treelet(GraphKernel): | |||
| canonkey_t = canonlist if canonlist < canonlist[::-1] else canonlist[::-1] | |||
| treelet.append(tuple([str(i)] + canonkey_t)) | |||
| canonkey_l.update(Counter(treelet)) | |||
| # n-star patterns | |||
| for i in range(3, 6): | |||
| treelet = [] | |||
| @@ -361,12 +348,12 @@ class Treelet(GraphKernel): | |||
| canonlist.append(tuple((nlabels, elabels))) | |||
| canonlist.sort() | |||
| canonlist = list(chain.from_iterable(canonlist)) | |||
| canonkey_t = tuple(['d' if i == 5 else str(i * 2)] + | |||
| [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] | |||
| canonkey_t = tuple(['d' if i == 5 else str(i * 2)] + | |||
| [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] | |||
| + canonlist) | |||
| treelet.append(canonkey_t) | |||
| canonkey_l.update(Counter(treelet)) | |||
| # pattern 7 | |||
| treelet = [] | |||
| for pattern in patterns['7']: | |||
| @@ -377,15 +364,15 @@ class Treelet(GraphKernel): | |||
| canonlist.append(tuple((nlabels, elabels))) | |||
| canonlist.sort() | |||
| canonlist = list(chain.from_iterable(canonlist)) | |||
| canonkey_t = tuple(['7'] | |||
| + [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] + canonlist | |||
| + [tuple(G.nodes[pattern[3]][nl] for nl in self._node_labels)] | |||
| canonkey_t = tuple(['7'] | |||
| + [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] + canonlist | |||
| + [tuple(G.nodes[pattern[3]][nl] for nl in self._node_labels)] | |||
| + [tuple(G[pattern[3]][pattern[0]][el] for el in self._edge_labels)] | |||
| + [tuple(G.nodes[pattern[4]][nl] for nl in self._node_labels)] | |||
| + [tuple(G.nodes[pattern[4]][nl] for nl in self._node_labels)] | |||
| + [tuple(G[pattern[4]][pattern[3]][el] for el in self._edge_labels)]) | |||
| treelet.append(canonkey_t) | |||
| canonkey_l.update(Counter(treelet)) | |||
| # pattern 11 | |||
| treelet = [] | |||
| for pattern in patterns['11']: | |||
| @@ -396,15 +383,15 @@ class Treelet(GraphKernel): | |||
| canonlist.append(tuple((nlabels, elabels))) | |||
| canonlist.sort() | |||
| canonlist = list(chain.from_iterable(canonlist)) | |||
| canonkey_t = tuple(['b'] | |||
| + [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] + canonlist | |||
| + [tuple(G.nodes[pattern[4]][nl] for nl in self._node_labels)] | |||
| canonkey_t = tuple(['b'] | |||
| + [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] + canonlist | |||
| + [tuple(G.nodes[pattern[4]][nl] for nl in self._node_labels)] | |||
| + [tuple(G[pattern[4]][pattern[0]][el] for el in self._edge_labels)] | |||
| + [tuple(G.nodes[pattern[5]][nl] for nl in self._node_labels)] | |||
| + [tuple(G.nodes[pattern[5]][nl] for nl in self._node_labels)] | |||
| + [tuple(G[pattern[5]][pattern[4]][el] for el in self._edge_labels)]) | |||
| treelet.append(canonkey_t) | |||
| canonkey_l.update(Counter(treelet)) | |||
| # pattern 10 | |||
| treelet = [] | |||
| for pattern in patterns['10']: | |||
| @@ -418,15 +405,15 @@ class Treelet(GraphKernel): | |||
| canonlist.sort() | |||
| canonkey0 = list(chain.from_iterable(canonlist)) | |||
| canonkey_t = tuple(['a'] | |||
| + [tuple(G.nodes[pattern[3]][nl] for nl in self._node_labels)] | |||
| + [tuple(G.nodes[pattern[4]][nl] for nl in self._node_labels)] | |||
| + [tuple(G[pattern[4]][pattern[3]][el] for el in self._edge_labels)] | |||
| + [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] | |||
| + [tuple(G[pattern[0]][pattern[3]][el] for el in self._edge_labels)] | |||
| + [tuple(G.nodes[pattern[3]][nl] for nl in self._node_labels)] | |||
| + [tuple(G.nodes[pattern[4]][nl] for nl in self._node_labels)] | |||
| + [tuple(G[pattern[4]][pattern[3]][el] for el in self._edge_labels)] | |||
| + [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] | |||
| + [tuple(G[pattern[0]][pattern[3]][el] for el in self._edge_labels)] | |||
| + canonkey4 + canonkey0) | |||
| treelet.append(canonkey_t) | |||
| canonkey_l.update(Counter(treelet)) | |||
| # pattern 12 | |||
| treelet = [] | |||
| for pattern in patterns['12']: | |||
| @@ -444,22 +431,22 @@ class Treelet(GraphKernel): | |||
| canonlist3.append(tuple((nlabels, elabels))) | |||
| canonlist3.sort() | |||
| canonlist3 = list(chain.from_iterable(canonlist3)) | |||
| # 2 possible key can be generated from 2 nodes with extended label 3, | |||
| # 2 possible key can be generated from 2 nodes with extended label 3, | |||
| # select the one with lower lexicographic order. | |||
| canonkey_t1 = tuple(['c'] | |||
| + [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] + canonlist0 | |||
| + [tuple(G.nodes[pattern[3]][nl] for nl in self._node_labels)] | |||
| + [tuple(G[pattern[3]][pattern[0]][el] for el in self._edge_labels)] | |||
| canonkey_t1 = tuple(['c'] | |||
| + [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] + canonlist0 | |||
| + [tuple(G.nodes[pattern[3]][nl] for nl in self._node_labels)] | |||
| + [tuple(G[pattern[3]][pattern[0]][el] for el in self._edge_labels)] | |||
| + canonlist3) | |||
| canonkey_t2 = tuple(['c'] | |||
| + [tuple(G.nodes[pattern[3]][nl] for nl in self._node_labels)] + canonlist3 | |||
| + [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] | |||
| + [tuple(G[pattern[0]][pattern[3]][el] for el in self._edge_labels)] | |||
| canonkey_t2 = tuple(['c'] | |||
| + [tuple(G.nodes[pattern[3]][nl] for nl in self._node_labels)] + canonlist3 | |||
| + [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] | |||
| + [tuple(G[pattern[0]][pattern[3]][el] for el in self._edge_labels)] | |||
| + canonlist0) | |||
| treelet.append(canonkey_t1 if canonkey_t1 < canonkey_t2 else canonkey_t2) | |||
| canonkey_l.update(Counter(treelet)) | |||
| # pattern 9 | |||
| treelet = [] | |||
| for pattern in patterns['9']: | |||
| @@ -469,7 +456,7 @@ class Treelet(GraphKernel): | |||
| tuple(G[pattern[5]][pattern[3]][el] for el in self._edge_labels)] | |||
| prekey2 = [tuple(G.nodes[pattern[2]][nl] for nl in self._node_labels), | |||
| tuple(G[pattern[2]][pattern[0]][el] for el in self._edge_labels)] | |||
| prekey3 = [tuple(G.nodes[pattern[3]][nl] for nl in self._node_labels), | |||
| prekey3 = [tuple(G.nodes[pattern[3]][nl] for nl in self._node_labels), | |||
| tuple(G[pattern[3]][pattern[0]][el] for el in self._edge_labels)] | |||
| if prekey2 + canonkey2 < prekey3 + canonkey3: | |||
| canonkey_t = [tuple(G.nodes[pattern[1]][nl] for nl in self._node_labels)] \ | |||
| @@ -480,21 +467,21 @@ class Treelet(GraphKernel): | |||
| + [tuple(G[pattern[1]][pattern[0]][el] for el in self._edge_labels)] \ | |||
| + prekey3 + prekey2 + canonkey3 + canonkey2 | |||
| treelet.append(tuple(['9'] | |||
| + [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] | |||
| + [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] | |||
| + canonkey_t)) | |||
| canonkey_l.update(Counter(treelet)) | |||
| return canonkey_l | |||
| return canonkey | |||
| def _wrapper_get_canonkeys(self, itr_item): | |||
| g = itr_item[0] | |||
| i = itr_item[1] | |||
| return i, self._get_canonkeys(g) | |||
| def _add_dummy_labels(self, Gn): | |||
| if len(self._node_labels) == 0 or (len(self._node_labels) == 1 and self._node_labels[0] == SpecialLabel.DUMMY): | |||
| for i in range(len(Gn)): | |||
| @@ -555,5 +555,12 @@ if __name__ == "__main__": | |||
| # test_RandomWalk('Acyclic', 'conjugate', None, 'imap_unordered') | |||
| # test_RandomWalk('Acyclic', 'fp', None, None) | |||
| # test_RandomWalk('Acyclic', 'spectral', 'exp', 'imap_unordered') | |||
| # test_CommonWalk('AIDS', 0.01, 'geo') | |||
| # test_CommonWalk('Acyclic', 0.01, 'geo') | |||
| # test_Marginalized('Acyclic', False) | |||
| # test_ShortestPath('Acyclic') | |||
| # test_PathUpToH('Acyclic', 'MinMax') | |||
| # test_Treelet('Acyclic') | |||
| # test_SylvesterEquation('Acyclic') | |||
| # test_ConjugateGradient('Acyclic') | |||
| # test_FixedPoint('Acyclic') | |||
| # test_SpectralDecomposition('Acyclic', 'exp') | |||
| @@ -25,3 +25,4 @@ from gklearn.utils.utils import normalize_gram_matrix, compute_distance_matrix | |||
| from gklearn.utils.trie import Trie | |||
| from gklearn.utils.knn import knn_cv, knn_classification | |||
| from gklearn.utils.model_selection_precomputed import model_selection_for_precomputed_kernel | |||
| from gklearn.utils.iters import get_iters | |||
| @@ -0,0 +1,55 @@ | |||
| #!/usr/bin/env python3 | |||
| # -*- coding: utf-8 -*- | |||
| """ | |||
| Created on Thu Dec 24 10:35:26 2020 | |||
| @author: ljia | |||
| """ | |||
| from tqdm import tqdm | |||
| import math | |||
| def get_iters(iterable, desc=None, file=None, length=None, verbose=True, **kwargs): | |||
| if verbose: | |||
| if 'miniters' not in kwargs: | |||
| if length is None: | |||
| try: | |||
| kwargs['miniters'] = math.ceil(len(iterable) / 100) | |||
| except TypeError: | |||
| raise | |||
| kwargs['miniters'] = 100 | |||
| else: | |||
| kwargs['miniters'] = math.ceil(length / 100) | |||
| if 'maxinterval' not in kwargs: | |||
| kwargs['maxinterval'] = 600 | |||
| return tqdm(iterable, desc=desc, file=file, **kwargs) | |||
| else: | |||
| return iterable | |||
| # class mytqdm(tqdm): | |||
| # def __init__(iterable=None, desc=None, total=None, leave=True, | |||
| # file=None, ncols=None, mininterval=0.1, maxinterval=10.0, | |||
| # miniters=None, ascii=None, disable=False, unit='it', | |||
| # unit_scale=False, dynamic_ncols=False, smoothing=0.3, | |||
| # bar_format=None, initial=0, position=None, postfix=None, | |||
| # unit_divisor=1000, write_bytes=None, lock_args=None, | |||
| # nrows=None, | |||
| # gui=False, **kwargs): | |||
| # if iterable is not None: | |||
| # miniters=math.ceil(len(iterable) / 100) | |||
| # maxinterval=600 | |||
| # super().__init__(iterable=iterable, desc=desc, total=total, leave=leave, | |||
| # file=file, ncols=ncols, mininterval=mininterval, maxinterval=maxinterval, | |||
| # miniters=miniters, ascii=ascii, disable=disable, unit=unit, | |||
| # unit_scale=unit_scale, dynamic_ncols=dynamic_ncols, smoothing=smoothing, | |||
| # bar_format=bar_format, initial=initial, position=position, postfix=postfix, | |||
| # unit_divisor=unit_divisor, write_bytes=write_bytes, lock_args=lock_args, | |||
| # nrows=nrows, | |||
| # gui=gui, **kwargs) | |||
| # tqdm = mytqdm | |||