| @@ -138,7 +138,7 @@ def compute_geds_cml(graphs, options={}, sort=True, parallel=False, verbose=True | |||
| return ged_vec, ged_mat, n_edit_operations | |||
| def compute_geds(graphs, options={}, sort=True, trial=1, parallel=False, verbose=True): | |||
| def compute_geds(graphs, options={}, sort=True, repeats=1, parallel=False, verbose=True): | |||
| from gklearn.gedlib import librariesImport, gedlibpy | |||
| # initialize ged env. | |||
| @@ -173,7 +173,7 @@ def compute_geds(graphs, options={}, sort=True, trial=1, parallel=False, verbose | |||
| G_graphs = graphs_toshare | |||
| G_ged_env = ged_env_toshare | |||
| G_listID = listID_toshare | |||
| do_partial = partial(_wrapper_compute_ged_parallel, neo_options, sort, trial) | |||
| do_partial = partial(_wrapper_compute_ged_parallel, neo_options, sort, repeats) | |||
| pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(graphs, ged_env, listID)) | |||
| if verbose: | |||
| iterator = tqdm(pool.imap_unordered(do_partial, itr, chunksize), | |||
| @@ -203,9 +203,9 @@ def compute_geds(graphs, options={}, sort=True, trial=1, parallel=False, verbose | |||
| # for i in range(len(graphs)): | |||
| for j in range(i + 1, len(graphs)): | |||
| if nx.number_of_nodes(graphs[i]) <= nx.number_of_nodes(graphs[j]) or not sort: | |||
| dis, pi_forward, pi_backward = _compute_ged(ged_env, listID[i], listID[j], graphs[i], graphs[j], trial) | |||
| dis, pi_forward, pi_backward = _compute_ged(ged_env, listID[i], listID[j], graphs[i], graphs[j], repeats) | |||
| else: | |||
| dis, pi_backward, pi_forward = _compute_ged(ged_env, listID[j], listID[i], graphs[j], graphs[i], trial) | |||
| dis, pi_backward, pi_forward = _compute_ged(ged_env, listID[j], listID[i], graphs[j], graphs[i], repeats) | |||
| ged_vec.append(dis) | |||
| ged_mat[i][j] = dis | |||
| ged_mat[j][i] = dis | |||
| @@ -215,25 +215,25 @@ def compute_geds(graphs, options={}, sort=True, trial=1, parallel=False, verbose | |||
| return ged_vec, ged_mat, n_edit_operations | |||
| def _wrapper_compute_ged_parallel(options, sort, trial, itr): | |||
| def _wrapper_compute_ged_parallel(options, sort, repeats, itr): | |||
| i = itr[0] | |||
| j = itr[1] | |||
| dis, n_eo_tmp = _compute_ged_parallel(G_ged_env, G_listID[i], G_listID[j], G_graphs[i], G_graphs[j], options, sort, trial) | |||
| dis, n_eo_tmp = _compute_ged_parallel(G_ged_env, G_listID[i], G_listID[j], G_graphs[i], G_graphs[j], options, sort, repeats) | |||
| return i, j, dis, n_eo_tmp | |||
| def _compute_ged_parallel(env, gid1, gid2, g1, g2, options, sort, trial): | |||
| def _compute_ged_parallel(env, gid1, gid2, g1, g2, options, sort, repeats): | |||
| if nx.number_of_nodes(g1) <= nx.number_of_nodes(g2) or not sort: | |||
| dis, pi_forward, pi_backward = _compute_ged(env, gid1, gid2, g1, g2, trial) | |||
| dis, pi_forward, pi_backward = _compute_ged(env, gid1, gid2, g1, g2, repeats) | |||
| else: | |||
| dis, pi_backward, pi_forward = _compute_ged(env, gid2, gid1, g2, g1, trial) | |||
| dis, pi_backward, pi_forward = _compute_ged(env, gid2, gid1, g2, g1, repeats) | |||
| n_eo_tmp = get_nb_edit_operations(g1, g2, pi_forward, pi_backward, **options) # [0,0,0,0,0,0] | |||
| return dis, n_eo_tmp | |||
| def _compute_ged(env, gid1, gid2, g1, g2, trial): | |||
| def _compute_ged(env, gid1, gid2, g1, g2, repeats): | |||
| dis_min = np.inf | |||
| for i in range(0, trial): | |||
| for i in range(0, repeats): | |||
| env.run_method(gid1, gid2) | |||
| pi_forward = env.get_forward_map(gid1, gid2) | |||
| pi_backward = env.get_backward_map(gid1, gid2) | |||