| @@ -0,0 +1,283 @@ | |||||
| #!/usr/bin/env python3 | |||||
| # -*- coding: utf-8 -*- | |||||
| """ | |||||
| Created on Thu Aug 20 16:12:45 2020 | |||||
| @author: ljia | |||||
| @references: | |||||
| [1] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph kernels. Journal of Machine Learning Research, 11(Apr):1201–1242, 2010. | |||||
| """ | |||||
| import sys | |||||
| from tqdm import tqdm | |||||
| import numpy as np | |||||
| import networkx as nx | |||||
| from scipy.sparse import kron | |||||
| from gklearn.utils.parallel import parallel_gm, parallel_me | |||||
| from gklearn.kernels import RandomWalk | |||||
| class SpectralDecomposition(RandomWalk): | |||||
| def __init__(self, **kwargs): | |||||
| RandomWalk.__init__(self, **kwargs) | |||||
| self._sub_kernel = kwargs.get('sub_kernel', None) | |||||
| def _compute_gm_series(self): | |||||
| self._check_edge_weight(self._graphs) | |||||
| self._check_graphs(self._graphs) | |||||
| if self._verbose >= 2: | |||||
| import warnings | |||||
| warnings.warn('All labels are ignored. Only works for undirected graphs.') | |||||
| # compute Gram matrix. | |||||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||||
| if self._q == None: | |||||
| # precompute the spectral decomposition of each graph. | |||||
| P_list = [] | |||||
| D_list = [] | |||||
| if self._verbose >= 2: | |||||
| iterator = tqdm(self._graphs, desc='spectral decompose', file=sys.stdout) | |||||
| else: | |||||
| iterator = self._graphs | |||||
| for G in iterator: | |||||
| # don't normalize adjacency matrices if q is a uniform vector. Note | |||||
| # A actually is the transpose of the adjacency matrix. | |||||
| A = nx.adjacency_matrix(G, self._edge_weight).todense().transpose() | |||||
| ew, ev = np.linalg.eig(A) | |||||
| D_list.append(ew) | |||||
| P_list.append(ev) | |||||
| # P_inv_list = [p.T for p in P_list] # @todo: also works for directed graphs? | |||||
| if self._p == None: # p is uniform distribution as default. | |||||
| q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in self._graphs] | |||||
| # q_T_list = [q.T for q in q_list] | |||||
| from itertools import combinations_with_replacement | |||||
| itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||||
| if self._verbose >= 2: | |||||
| iterator = tqdm(itr, desc='calculating kernels', file=sys.stdout) | |||||
| else: | |||||
| iterator = itr | |||||
| for i, j in iterator: | |||||
| kernel = self.__kernel_do(q_T_list[i], q_T_list[j], P_list[i], P_list[j], D_list[i], D_list[j], self._weight, self._sub_kernel) | |||||
| gram_matrix[i][j] = kernel | |||||
| gram_matrix[j][i] = kernel | |||||
| else: # @todo | |||||
| pass | |||||
| else: # @todo | |||||
| pass | |||||
| return gram_matrix | |||||
| def _compute_gm_imap_unordered(self): | |||||
| self._check_edge_weight(self._graphs) | |||||
| self._check_graphs(self._graphs) | |||||
| if self._verbose >= 2: | |||||
| import warnings | |||||
| warnings.warn('All labels are ignored. Only works for undirected graphs.') | |||||
| # compute Gram matrix. | |||||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||||
| if self._q == None: | |||||
| # precompute the spectral decomposition of each graph. | |||||
| P_list = [] | |||||
| D_list = [] | |||||
| if self._verbose >= 2: | |||||
| iterator = tqdm(self._graphs, desc='spectral decompose', file=sys.stdout) | |||||
| else: | |||||
| iterator = self._graphs | |||||
| for G in iterator: | |||||
| # don't normalize adjacency matrices if q is a uniform vector. Note | |||||
| # A actually is the transpose of the adjacency matrix. | |||||
| A = nx.adjacency_matrix(G, self._edge_weight).todense().transpose() | |||||
| ew, ev = np.linalg.eig(A) | |||||
| D_list.append(ew) | |||||
| P_list.append(ev) # @todo: parallel? | |||||
| if self._p == None: # p is uniform distribution as default. | |||||
| q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in self._graphs] # @todo: parallel? | |||||
| def init_worker(q_T_list_toshare, P_list_toshare, D_list_toshare): | |||||
| global G_q_T_list, G_P_list, G_D_list | |||||
| G_q_T_list = q_T_list_toshare | |||||
| G_P_list = P_list_toshare | |||||
| G_D_list = D_list_toshare | |||||
| do_fun = self._wrapper_kernel_do | |||||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||||
| glbv=(q_T_list, P_list, D_list), n_jobs=self._n_jobs, verbose=self._verbose) | |||||
| else: # @todo | |||||
| pass | |||||
| else: # @todo | |||||
| pass | |||||
| return gram_matrix | |||||
| def _compute_kernel_list_series(self, g1, g_list): | |||||
| self._check_edge_weight(g_list + [g1]) | |||||
| self._check_graphs(g_list + [g1]) | |||||
| if self._verbose >= 2: | |||||
| import warnings | |||||
| warnings.warn('All labels are ignored. Only works for undirected graphs.') | |||||
| # compute kernel list. | |||||
| kernel_list = [None] * len(g_list) | |||||
| if self._q == None: | |||||
| # precompute the spectral decomposition of each graph. | |||||
| A1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() | |||||
| D1, P1 = np.linalg.eig(A1) | |||||
| P_list = [] | |||||
| D_list = [] | |||||
| if self._verbose >= 2: | |||||
| iterator = tqdm(range(len(g_list)), desc='spectral decompose', file=sys.stdout) | |||||
| else: | |||||
| iterator = range(len(g_list)) | |||||
| for G in iterator: | |||||
| # don't normalize adjacency matrices if q is a uniform vector. Note | |||||
| # A actually is the transpose of the adjacency matrix. | |||||
| A = nx.adjacency_matrix(G, self._edge_weight).todense().transpose() | |||||
| ew, ev = np.linalg.eig(A) | |||||
| D_list.append(ew) | |||||
| P_list.append(ev) | |||||
| if self._p == None: # p is uniform distribution as default. | |||||
| q_T1 = 1 / nx.number_of_nodes(g1) | |||||
| q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in g_list] | |||||
| if self._verbose >= 2: | |||||
| iterator = tqdm(range(len(g_list)), desc='calculating kernels', file=sys.stdout) | |||||
| else: | |||||
| iterator = range(len(g_list)) | |||||
| for i in iterator: | |||||
| kernel = self.__kernel_do(q_T1, q_T_list[i], P1, P_list[i], D1, D_list[i], self._weight, self._sub_kernel) | |||||
| kernel_list[i] = kernel | |||||
| else: # @todo | |||||
| pass | |||||
| else: # @todo | |||||
| pass | |||||
| return kernel_list | |||||
| def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||||
| self._check_edge_weight(g_list + [g1]) | |||||
| self._check_graphs(g_list + [g1]) | |||||
| if self._verbose >= 2: | |||||
| import warnings | |||||
| warnings.warn('All labels are ignored. Only works for undirected graphs.') | |||||
| # compute kernel list. | |||||
| kernel_list = [None] * len(g_list) | |||||
| if self._q == None: | |||||
| # precompute the spectral decomposition of each graph. | |||||
| A1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() | |||||
| D1, P1 = np.linalg.eig(A1) | |||||
| P_list = [] | |||||
| D_list = [] | |||||
| if self._verbose >= 2: | |||||
| iterator = tqdm(range(len(g_list)), desc='spectral decompose', file=sys.stdout) | |||||
| else: | |||||
| iterator = range(len(g_list)) | |||||
| for G in iterator: | |||||
| # don't normalize adjacency matrices if q is a uniform vector. Note | |||||
| # A actually is the transpose of the adjacency matrix. | |||||
| A = nx.adjacency_matrix(G, self._edge_weight).todense().transpose() | |||||
| ew, ev = np.linalg.eig(A) | |||||
| D_list.append(ew) | |||||
| P_list.append(ev) # @todo: parallel? | |||||
| if self._p == None: # p is uniform distribution as default. | |||||
| q_T1 = 1 / nx.number_of_nodes(g1) | |||||
| q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in g_list] # @todo: parallel? | |||||
| def init_worker(q_T1_toshare, P1_toshare, D1_toshare, q_T_list_toshare, P_list_toshare, D_list_toshare): | |||||
| global G_q_T1, G_P1, G_D1, G_q_T_list, G_P_list, G_D_list | |||||
| G_q_T1 = q_T1_toshare | |||||
| G_P1 = P1_toshare | |||||
| G_D1 = D1_toshare | |||||
| G_q_T_list = q_T_list_toshare | |||||
| G_P_list = P_list_toshare | |||||
| G_D_list = D_list_toshare | |||||
| do_fun = self._wrapper_kernel_list_do | |||||
| def func_assign(result, var_to_assign): | |||||
| var_to_assign[result[0]] = result[1] | |||||
| itr = range(len(g_list)) | |||||
| len_itr = len(g_list) | |||||
| parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||||
| init_worker=init_worker, glbv=(q_T1, P1, D1, q_T_list, P_list, D_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='calculating kernels', verbose=self._verbose) | |||||
| else: # @todo | |||||
| pass | |||||
| else: # @todo | |||||
| pass | |||||
| return kernel_list | |||||
| def _wrapper_kernel_list_do(self, itr): | |||||
| return itr, self._kernel_do(G_q_T1, G_q_T_list[itr], G_P1, G_P_list[itr], G_D1, G_D_list[itr], self._weight, self._sub_kernel) | |||||
| def _compute_single_kernel_series(self, g1, g2): | |||||
| self._check_edge_weight([g1] + [g2]) | |||||
| self._check_graphs([g1] + [g2]) | |||||
| if self._verbose >= 2: | |||||
| import warnings | |||||
| warnings.warn('All labels are ignored. Only works for undirected graphs.') | |||||
| if self._q == None: | |||||
| # precompute the spectral decomposition of each graph. | |||||
| A1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() | |||||
| D1, P1 = np.linalg.eig(A1) | |||||
| A2 = nx.adjacency_matrix(g2, self._edge_weight).todense().transpose() | |||||
| D2, P2 = np.linalg.eig(A2) | |||||
| if self._p == None: # p is uniform distribution as default. | |||||
| q_T1 = 1 / nx.number_of_nodes(g1) | |||||
| q_T2 = 1 / nx.number_of_nodes(g2) | |||||
| kernel = self.__kernel_do(q_T1, q_T2, P1, P2, D1, D2, self._weight, self._sub_kernel) | |||||
| else: # @todo | |||||
| pass | |||||
| else: # @todo | |||||
| pass | |||||
| return kernel | |||||
| def __kernel_do(self, q_T1, q_T2, P1, P2, D1, D2, weight, sub_kernel): | |||||
| # use uniform distribution if there is no prior knowledge. | |||||
| kl = kron(np.dot(q_T1, P1), np.dot(q_T2, P2)).todense() | |||||
| # @todo: this is not needed when p = q (kr = kl.T) for undirected graphs. | |||||
| # kr = kron(np.dot(P_inv_list[i], q_list[i]), np.dot(P_inv_list[j], q_list[j])).todense() | |||||
| if sub_kernel == 'exp': | |||||
| D_diag = np.array([d1 * d2 for d1 in D1 for d2 in D2]) | |||||
| kmiddle = np.diag(np.exp(weight * D_diag)) | |||||
| elif sub_kernel == 'geo': | |||||
| D_diag = np.array([d1 * d2 for d1 in D1 for d2 in D2]) | |||||
| kmiddle = np.diag(weight * D_diag) | |||||
| kmiddle = np.identity(len(kmiddle)) - weight * kmiddle | |||||
| kmiddle = np.linalg.inv(kmiddle) | |||||
| return np.dot(np.dot(kl, kmiddle), kl.T)[0, 0] | |||||
| def _wrapper_kernel_do(self, itr): | |||||
| i = itr[0] | |||||
| j = itr[1] | |||||
| return i, j, self.__kernel_do(G_q_T_list[i], G_q_T_list[j], G_P_list[i], G_P_list[j], G_D_list[i], G_D_list[j], self._weight, self._sub_kernel) | |||||