| @@ -33,25 +33,25 @@ class Marginalized(GraphKernel): | |||
| def __init__(self, **kwargs): | |||
| GraphKernel.__init__(self) | |||
| self.__node_labels = kwargs.get('node_labels', []) | |||
| self.__edge_labels = kwargs.get('edge_labels', []) | |||
| self.__p_quit = kwargs.get('p_quit', 0.5) | |||
| self.__n_iteration = kwargs.get('n_iteration', 10) | |||
| self.__remove_totters = kwargs.get('remove_totters', False) | |||
| self.__ds_infos = kwargs.get('ds_infos', {}) | |||
| self.__n_iteration = int(self.__n_iteration) | |||
| self._node_labels = kwargs.get('node_labels', []) | |||
| self._edge_labels = kwargs.get('edge_labels', []) | |||
| self._p_quit = kwargs.get('p_quit', 0.5) | |||
| self._n_iteration = kwargs.get('n_iteration', 10) | |||
| self._remove_totters = kwargs.get('remove_totters', False) | |||
| self._ds_infos = kwargs.get('ds_infos', {}) | |||
| self._n_iteration = int(self._n_iteration) | |||
| def _compute_gm_series(self): | |||
| self.__add_dummy_labels(self._graphs) | |||
| self._add_dummy_labels(self._graphs) | |||
| if self.__remove_totters: | |||
| if self._remove_totters: | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(self._graphs, desc='removing tottering', file=sys.stdout) | |||
| else: | |||
| iterator = self._graphs | |||
| # @todo: this may not work. | |||
| self._graphs = [untotterTransformation(G, self.__node_labels, self.__edge_labels) for G in iterator] | |||
| self._graphs = [untotterTransformation(G, self._node_labels, self._edge_labels) for G in iterator] | |||
| # compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| @@ -63,7 +63,7 @@ class Marginalized(GraphKernel): | |||
| else: | |||
| iterator = itr | |||
| for i, j in iterator: | |||
| kernel = self.__kernel_do(self._graphs[i], self._graphs[j]) | |||
| kernel = self._kernel_do(self._graphs[i], self._graphs[j]) | |||
| gram_matrix[i][j] = kernel | |||
| gram_matrix[j][i] = kernel # @todo: no directed graph considered? | |||
| @@ -71,9 +71,9 @@ class Marginalized(GraphKernel): | |||
| def _compute_gm_imap_unordered(self): | |||
| self.__add_dummy_labels(self._graphs) | |||
| self._add_dummy_labels(self._graphs) | |||
| if self.__remove_totters: | |||
| if self._remove_totters: | |||
| pool = Pool(self._n_jobs) | |||
| itr = range(0, len(self._graphs)) | |||
| if len(self._graphs) < 100 * self._n_jobs: | |||
| @@ -105,16 +105,16 @@ class Marginalized(GraphKernel): | |||
| def _compute_kernel_list_series(self, g1, g_list): | |||
| self.__add_dummy_labels(g_list + [g1]) | |||
| self._add_dummy_labels(g_list + [g1]) | |||
| if self.__remove_totters: | |||
| g1 = untotterTransformation(g1, self.__node_labels, self.__edge_labels) # @todo: this may not work. | |||
| if self._remove_totters: | |||
| g1 = untotterTransformation(g1, self._node_labels, self._edge_labels) # @todo: this may not work. | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(g_list, desc='removing tottering', file=sys.stdout) | |||
| else: | |||
| iterator = g_list | |||
| # @todo: this may not work. | |||
| g_list = [untotterTransformation(G, self.__node_labels, self.__edge_labels) for G in iterator] | |||
| g_list = [untotterTransformation(G, self._node_labels, self._edge_labels) for G in iterator] | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| @@ -123,17 +123,17 @@ class Marginalized(GraphKernel): | |||
| else: | |||
| iterator = range(len(g_list)) | |||
| for i in iterator: | |||
| kernel = self.__kernel_do(g1, g_list[i]) | |||
| kernel = self._kernel_do(g1, g_list[i]) | |||
| kernel_list[i] = kernel | |||
| return kernel_list | |||
| def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
| self.__add_dummy_labels(g_list + [g1]) | |||
| self._add_dummy_labels(g_list + [g1]) | |||
| if self.__remove_totters: | |||
| g1 = untotterTransformation(g1, self.__node_labels, self.__edge_labels) # @todo: this may not work. | |||
| if self._remove_totters: | |||
| g1 = untotterTransformation(g1, self._node_labels, self._edge_labels) # @todo: this may not work. | |||
| pool = Pool(self._n_jobs) | |||
| itr = range(0, len(g_list)) | |||
| if len(g_list) < 100 * self._n_jobs: | |||
| @@ -171,19 +171,19 @@ class Marginalized(GraphKernel): | |||
| def _wrapper_kernel_list_do(self, itr): | |||
| return itr, self.__kernel_do(G_g1, G_g_list[itr]) | |||
| return itr, self._kernel_do(G_g1, G_g_list[itr]) | |||
| def _compute_single_kernel_series(self, g1, g2): | |||
| self.__add_dummy_labels([g1] + [g2]) | |||
| if self.__remove_totters: | |||
| g1 = untotterTransformation(g1, self.__node_labels, self.__edge_labels) # @todo: this may not work. | |||
| g2 = untotterTransformation(g2, self.__node_labels, self.__edge_labels) | |||
| kernel = self.__kernel_do(g1, g2) | |||
| self._add_dummy_labels([g1] + [g2]) | |||
| if self._remove_totters: | |||
| g1 = untotterTransformation(g1, self._node_labels, self._edge_labels) # @todo: this may not work. | |||
| g2 = untotterTransformation(g2, self._node_labels, self._edge_labels) | |||
| kernel = self._kernel_do(g1, g2) | |||
| return kernel | |||
| def __kernel_do(self, g1, g2): | |||
| def _kernel_do(self, g1, g2): | |||
| """Compute marginalized graph kernel between 2 graphs. | |||
| Parameters | |||
| @@ -205,7 +205,7 @@ class Marginalized(GraphKernel): | |||
| p_init_G1 = 1 / num_nodes_G1 | |||
| p_init_G2 = 1 / num_nodes_G2 | |||
| q = self.__p_quit * self.__p_quit | |||
| q = self._p_quit * self._p_quit | |||
| r1 = q | |||
| # # initial R_inf | |||
| @@ -260,36 +260,36 @@ class Marginalized(GraphKernel): | |||
| if len(g2[node2]) > 0: | |||
| R_inf[(node1, node2)] = r1 | |||
| else: | |||
| R_inf[(node1, node2)] = self.__p_quit | |||
| R_inf[(node1, node2)] = self._p_quit | |||
| else: | |||
| if len(g2[node2]) > 0: | |||
| R_inf[(node1, node2)] = self.__p_quit | |||
| R_inf[(node1, node2)] = self._p_quit | |||
| else: | |||
| R_inf[(node1, node2)] = 1 | |||
| # compute all transition probability first. | |||
| t_dict = {} | |||
| if self.__n_iteration > 1: | |||
| if self._n_iteration > 1: | |||
| for node1 in g1.nodes(): | |||
| neighbor_n1 = g1[node1] | |||
| # the transition probability distribution in the random walks | |||
| # generating step (uniform distribution over the vertices adjacent | |||
| # to the current vertex) | |||
| if len(neighbor_n1) > 0: | |||
| p_trans_n1 = (1 - self.__p_quit) / len(neighbor_n1) | |||
| p_trans_n1 = (1 - self._p_quit) / len(neighbor_n1) | |||
| for node2 in g2.nodes(): | |||
| neighbor_n2 = g2[node2] | |||
| if len(neighbor_n2) > 0: | |||
| p_trans_n2 = (1 - self.__p_quit) / len(neighbor_n2) | |||
| p_trans_n2 = (1 - self._p_quit) / len(neighbor_n2) | |||
| for neighbor1 in neighbor_n1: | |||
| for neighbor2 in neighbor_n2: | |||
| t_dict[(node1, node2, neighbor1, neighbor2)] = \ | |||
| p_trans_n1 * p_trans_n2 * \ | |||
| deltakernel(tuple(g1.nodes[neighbor1][nl] for nl in self.__node_labels), tuple(g2.nodes[neighbor2][nl] for nl in self.__node_labels)) * \ | |||
| deltakernel(tuple(neighbor_n1[neighbor1][el] for el in self.__edge_labels), tuple(neighbor_n2[neighbor2][el] for el in self.__edge_labels)) | |||
| deltakernel(tuple(g1.nodes[neighbor1][nl] for nl in self._node_labels), tuple(g2.nodes[neighbor2][nl] for nl in self._node_labels)) * \ | |||
| deltakernel(tuple(neighbor_n1[neighbor1][el] for el in self._edge_labels), tuple(neighbor_n2[neighbor2][el] for el in self._edge_labels)) | |||
| # Compute R_inf with a simple interative method | |||
| for i in range(2, self.__n_iteration + 1): | |||
| for i in range(2, self._n_iteration + 1): | |||
| R_inf_old = R_inf.copy() | |||
| # Compute R_inf for each pair of nodes | |||
| @@ -311,7 +311,7 @@ class Marginalized(GraphKernel): | |||
| # add elements of R_inf up and compute kernel. | |||
| for (n1, n2), value in R_inf.items(): | |||
| s = p_init_G1 * p_init_G2 * deltakernel(tuple(g1.nodes[n1][nl] for nl in self.__node_labels), tuple(g2.nodes[n2][nl] for nl in self.__node_labels)) | |||
| s = p_init_G1 * p_init_G2 * deltakernel(tuple(g1.nodes[n1][nl] for nl in self._node_labels), tuple(g2.nodes[n2][nl] for nl in self._node_labels)) | |||
| kernel += s * value # ref [1] equation (6) | |||
| return kernel | |||
| @@ -320,19 +320,19 @@ class Marginalized(GraphKernel): | |||
| def _wrapper_kernel_do(self, itr): | |||
| i = itr[0] | |||
| j = itr[1] | |||
| return i, j, self.__kernel_do(G_gn[i], G_gn[j]) | |||
| return i, j, self._kernel_do(G_gn[i], G_gn[j]) | |||
| def _wrapper_untotter(self, i): | |||
| return i, untotterTransformation(self._graphs[i], self.__node_labels, self.__edge_labels) # @todo: this may not work. | |||
| return i, untotterTransformation(self._graphs[i], self._node_labels, self._edge_labels) # @todo: this may not work. | |||
| def __add_dummy_labels(self, Gn): | |||
| if len(self.__node_labels) == 0 or (len(self.__node_labels) == 1 and self.__node_labels[0] == SpecialLabel.DUMMY): | |||
| def _add_dummy_labels(self, Gn): | |||
| if len(self._node_labels) == 0 or (len(self._node_labels) == 1 and self._node_labels[0] == SpecialLabel.DUMMY): | |||
| for i in range(len(Gn)): | |||
| nx.set_node_attributes(Gn[i], '0', SpecialLabel.DUMMY) | |||
| self.__node_labels = [SpecialLabel.DUMMY] | |||
| if len(self.__edge_labels) == 0 or (len(self.__edge_labels) == 1 and self.__edge_labels[0] == SpecialLabel.DUMMY): | |||
| self._node_labels = [SpecialLabel.DUMMY] | |||
| if len(self._edge_labels) == 0 or (len(self._edge_labels) == 1 and self._edge_labels[0] == SpecialLabel.DUMMY): | |||
| for i in range(len(Gn)): | |||
| nx.set_edge_attributes(Gn[i], '0', SpecialLabel.DUMMY) | |||
| self.__edge_labels = [SpecialLabel.DUMMY] | |||
| self._edge_labels = [SpecialLabel.DUMMY] | |||